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ABSTRACT

Decoding the linguistic intricacies of the genome is a crucial problem in biology, and pre-trained
foundational models such as DNABERT and Nucleotide Transformer have made significant strides
in this area. Existing works have largely hinged on k-mer, fixed-length permutations of A, T, C,
and G, as the token of the genome language due to its simplicity. However, we argue that the
computation and sample inefficiencies introduced by k-mer tokenization are primary obstacles in
developing large genome foundational models. We provide conceptual and empirical insights into
genome tokenization, building on which we propose to replace k-mer tokenization with Byte Pair
Encoding (BPE), a statistics-based data compression algorithm that constructs tokens by iteratively
merging the most frequent co-occurring genome segment in the corpus. We demonstrate that BPE
not only overcomes the limitations of k-mer tokenization but also benefits from the computational
efficiency of non-overlapping tokenization. Based on these insights, we introduce DNABERT-2, a
refined genome foundation model that adapts an efficient tokenizer and employs multiple strategies
to overcome input length constraints, reduce time and memory expenditure, and enhance model
capability. Furthermore, we identify the absence of a comprehensive and standardized benchmark for
genome understanding as another significant impediment to fair comparative analysis. In response,
we propose the Genome Understanding Evaluation (GUE), a comprehensive multi-species genome
classification dataset that amalgamates 28 distinct datasets across 7 tasks, with input lengths ranging
from 70 to 1000. Through comprehensive experiments on the GUE benchmark, we demonstrate
that DNABERT-2 achieves comparable performance to the state-of-the-art model with 21× fewer
parameters and approximately 56× less GPU time 1 in pre-training. Compared to DNABERT, while
being 3× more efficient, DNABERT-2 outperforms it on 23 out of 28 datasets, with an average
improvement of 6 absolute scores on GUE. The code, data, and pre-trained model are publicly
available at https://github.com/Zhihan1996/DNABERT_2.

1 Introduction

Transformer-based foundation models [Bommasani et al., 2022; Kenton and Toutanova, 2019; OpenAI, 2023] have
witnessed significant progress in recent years, particularly exemplified by the advent of groundbreaking language
models like ChatGPT [OpenAI, 2023; Ouyang et al., 2022]. In parallel, the significance of foundation models has
also been increasingly appreciated in the genomics field, as they represent the understanding of genome sequences
via numerical embeddings that are directly applicable to various genome analysis tasks. These models can capture
complex relationships and dependencies in DNA sequences, opening new avenues for understanding transcriptional
regulation [Li et al., 2023], non-coding genetic variants associated with human diseases and traits [Rozowsky et al.,
2023], and the functional effects of regulatory elements [Smith et al., 2023]. Recent advancements in genome language
modeling have demonstrated their superiority in a range of downstream applications, including promoter prediction [Le
et al., 2022; Zhang et al., 2022], gene expression prediction [Avsec et al., 2021], DNA methylation prediction [Jin et al.,

∗Emails: {zhihanzhou, yanrongji, weijianli}@u.northwestern.edu, hanliu@northwestern.edu
†Emails: pratik.dutta@stonybrook.edu, Ramana.Davuluri@stonybrookmedicine.edu
1About 14 days on 8 NVIDIA RTX 2080Ti GPUs V.S. 17 days on 128 NVIDIA A100 GPUs. Estimated with the Method 2:
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2022], chromatin state analysis [Lee et al., 2022], promoter-enhancer interaction prediction [Chen et al., 2022; Ni et al.,
2022], TF-DNA binding prediction [Wang et al., 2022], variant effect prediction [Rozowsky et al., 2023], gene network
prediction [Theodoris et al., 2023] and more. These models provide researchers with powerful tools to understand the
functional importance of different genomics elements and unravel key biological processes and mechanisms.

In this context, we previously developed DNABERT [Ji et al., 2021], an initial foundation model (FM), to unravel
the human genome from a language perspective. Despite being widely applied in the community, several technical
limitations still present at the time with the original DNABERT implementation, limiting its full potential. First,
although proven to be generalizable to other organisms, the pretraining was solely done on the human reference
genome, omitting the sequence conservation and diversity across species. Second, k-mer tokenization resulted in
information leakage and overall poor computational efficiency during pre-training, which hampers its scalability. Lastly,
the simplistic DNABERT-XL solution—intended to bypass the restriction of 512 input sequences imposed by the
learned positional embedding [Kenton and Toutanova, 2019]—fell short in handling long input sequences, both in
efficiency and effectiveness. These limitations underlined the need for further advancements in the domain of DNA
language models.

Recently, Lopez et al. [2023] introduced Nucleotide Transformers (NT), a series of genome foundation models scaling
from 500M to 2500M parameters. NT alleviated the first two limitations of DNABERT by pre-training on a large
collection of genomes from 850 species and replacing overlapping k-mer tokenization with a non-overlapping version,
substantially reducing tokenized sequence length. Despite this, a hard input length limitation still exist, while, as we
will discuss in Sec. 2, non-overlapping k-mer tokenization also suffered from poor sample efficiency as it complicates
the model’s task of aligning significantly distinct representations of near-identical inputs.

In view of the aforementioned limitations, we introduce DNABERT-2, a multi-species genome foundation model that
replaces k-mer tokenization with Byte Pair Encoding (BPE) [Sennrich et al., 2016], a data compression algorithm
that has been widely used by large language models. We show that BPE effectively addresses the known issues
of k-mer tokenization while maintaining the computational efficiency of non-overlapping tokenization. Moreover,
DNABERT-2 overcomes the limitation of DNABERT by replacing learned positional embeddings with Attention with
Linear Biases (ALiBi) [Press et al., 2021] to get rid of the input length limitation, incorporating Flash Attention [Dao
et al., 2022] to increase computational efficiency, and adjusting model architecture to increase model capability. As a
result of the efficient tokenizer and advanced model architecture, DNABERT-2 achieves comparable performance to
the state-of-the-art model with approximately 56× less computational cost and 21× fewer parameters, identifying its
computation- and sample- efficiency and enabling efficient fine-tuning on most consumer GPUs.

Meanwhile, despite progress in genome foundational models, the absence of carefully curated benchmarks has posed a
significant challenge. Owing to the unstandardized pre-processing pipeline of genome sequences, it is unjust to directly
compare model performances with results reported in previous papers, even when the data originate from the same
source. Moreover, many genome understanding evaluation datasets used in existing works [Lopez et al., 2023] are either
too trivial or too challenging, leading to similar scores for most models and failing to accurately reflect different models’
capabilities. The scarcity of high-quality benchmark datasets hampers evaluating and comparing different models and
further hinders the development of novel techniques. To this end, we introduce Genome Understanding Evaluation
(GUE), a standardized and comprehensive multi-species benchmark containing 28 datasets across 7 important genome
analysis tasks on genomes of 4 species with input lengths ranging from 70 to 1000. All the datasets are elaborately
calibrated with a series of strategies to ensure they are suitable for reflecting the capability level of existing genome
foundation models.

Our main contributions can be therefore summarized as follows: 1) We identify key obstacles in genome tokenization and
provide deep insights, presenting a simple yet effective solution that balances the efficiency and effectiveness of genome
foundation models; 2) We introduce DNABERT-2, an efficient pre-trained foundation model for multi-species genome
that delivers performance on par with the state-of-the-art model while being 21× smaller and utilizes approximately
56× less GPU time; 3) We introduce Genome Understanding Evaluation (GUE), a standardized, comprehensive, and
well-calibrated multi-species genome classification benchmark including 7 tasks and 28 datasets to facilitate research in
genome foundation model.

2 Background

Tokenization serves as a critical initial step in language modeling, significantly impacting the efficiency and effectiveness
of the model. DNA sequences consist of 4 unique nucleotide bases: A, T, C, and G. A majority of genome language
models [Ji et al., 2021; Lopez et al., 2023] utilize the k-mer tokenization technique, in which each contiguous k-length
genome segment is considered as a token. During tokenization, a sliding window with window size k and stride t is
employed to convert the original genome sequence into a series of k-mers. Here, the stride t is either set as 1 or k, while
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ATTGCACT ATTGCA TTGCAC TGCACT

[MASK] TTGCAC TGCACTA/T/C/G + TTGCA

ATTGCA TGCACT[MASK]

Sequence Token 1 Token 2 Token 3

Partially Leaked

TTGCA + C 
Entirely Leaked

Sequence 1 ACAATAATAATAATAACGG
Sequence 2 CAATAATAATAATAACGG

A CAA TAATAATAATAA CGG
CAA TAATAATAATAA CGG

Ours

k-mer ACAATA   ATAATA   ATAACG  G
CAATAA   TAATAA  TAACGG

[5, 27, 1769, 72]
[27, 1769, 72]

[520, 264, 271, 4103]
[2068, 1044, 1075]

Tokens Token IDs

Overlapped Non-Overlapped

Figure 1: Illustration of the drawbacks of k-mer tokenization. In the overlapping setting, information about a masked
token is leaked by its adjacent tokens, while in the non-overlapping setting, adding/deleting one nucleotide base leads to
a dramatic change in the tokenized sequence.

the first one represents the overlapping version of k-mer tokenization and the other one represents the non-overlapping
version. Figure 1 presents examples of overlapping (left) and non-overlapping (right) k-mer tokenizations. Despite its
wide application, we argue that both versions of the k-mer tokenization are less optimal.

Overlapping k-mers tokenization ensures adjacent tokens always overlap by k − 1 characters, resulting in significant
information leakage in masked language modeling. As depicted in Figure 1, a masked token is entirely leaked when
adjacent tokens from both sides are not masked, and it is partially leaked when adjacent tokens from only one side are
present. Generally, in the overlapping k-mer tokenization setting, let l and r denote the distances between a masked
token [M] and its closest unmasked adjacent token on the left and right sides, the number of possible options of [M] is
4
min(l,r,k,max(0,l+r−k)). In other words, to prevent the entire leakage of a masked token, at least k − 1 tokens on its left

and right sides in total must be masked, which explains why Ji et al. [2021] opt to mask a continuous span of k tokens.
Furthermore, to guarantee no leakage of a masked token, at least k tokens on both sides must be masked. Nevertheless,
information leakage is still inevitable for the leftmost and rightmost k − 1 masked tokens. Ideally, in masked language
modeling, a model is required to select the best option from the entire vocabulary, enabling it to differentiate and
evaluate among a large number of options. However, if the search space is undesirably reduced due to information
leakage, the model only needs to differentiate between a limited number of options. Consequently, this results in poor
sample efficiency, as the model may not be sufficiently challenged to learn the underlying patterns in the data. Also, the
tokenized sequence for an input of length L consists of L − k + 1 tokens, each with a length of k. This results in a
tokenized sequence with considerable redundancy and a length nearly equivalent to the original sequence, leading to
low computation efficiency considering the quadratic computation complexity of Transformer-based [Vaswani et al.,
2017] models. This becomes particularly problematic when attempting to scale up the model. Therefore, Lopez et al.
[2023] proposed the non-overlapping k-mer tokenization.

Non-overlapping k-mer tokenization, despite its advantage of reducing sequence length by a factor of k, is plagued by a
notable issue of sample inefficiency. Figure 1 graphically illustrates this problem. Considering a scenario when the
context window is reduced by 1, the model input is then switched from Sequence 1 to Sequence 2. In theory, this should
involve a minor adjustment in tokenized output. However, with the non-overlapping k-mer tokenizer, this minor shift
instigates a dramatic alteration in the tokenized output. Despite the two sequences originating from the same genomic
segment, their tokenized representations bear little resemblance. This inconsistent behavior introduces unnecessary
hurdles for the model during training, as it poses unnecessary difficulty for the model to align distinct representations of
identical or near-identical inputs. Consequently, the inefficiency in learning from the data could impede the overall
model performance. The implications of these observations advocate for a re-evaluation of tokenization strategies for
the genome language, with a focus on strategies that ensure robust and efficient representation.

To address the aforementioned issues, we propose to adapt SentencePiece [Kudo and Richardson, 2018], a subword
tokenization framework widely used in natural language processing, to replace k-mer tokenization for genome sequences.
We employ Byte-Pair Encoding (BPE) [Sennrich et al., 2016] to iteratively merge frequent pairs of nucleotides and
genome segments, forming a vocabulary of variable-length tokens that effectively represent the entire genome dataset.
Despite its conceptual simplicity, this method is well-suited for genome foundation models. First, it not only prevents
information leakage but also significantly reduces the sequence length by approximately 5 times (detailed statistics
are presented in Sec 3.1), substantially improving computational efficiency. Moreover, its robust tokenization result is
beneficial for sample efficiency since it allows the model to focus on understanding the genome language semantics
without being distracted by the distinct representations of the same input. Furthermore, unlike k-mer tokenization,
BPE doesn’t always produce tokens of length k. Consequently, when a token containing an unspecified number of
nucleotides is masked, the model is challenged to predict both the number of nucleotides and the particular nucleotides
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themselves. This naturally transforms the masked language modeling objective into a T5-style [Raffel et al., 2020]
"replace spans of text" objective, which has been demonstrated to be more effective than standard masked language
modeling in various scenarios.

3 Method

In this section, we provide empirical analysis on the BPE tokenizer for genome language (§ 3.1) and describe the model
architecture (§ 3.2) and implementation details (§ 3.3) of DNABERT-2.

3.1 Tokenizer

AACGCACTATATA
A A C G C A C T A T A T A

{A,T,C,G}

A A C G C A C TA  TA  TA 
{A,T,C,G,TA}

A AC  G C AC TA  TA  TA 
{A,T,C,G,TA, AC}

Corpus Vocabulary

......

Iteration

0
1
2
3

Figure 2: Illustration of the BPE vocabulary constructions.

DNABERT-2 adapts SentencePiece [Kudo and Richard-
son, 2018] with Byte Pair Encoding (BPE) [Sennrich
et al., 2016] to perform tokenization for DNA sequences.
SentencePiece is a language-agnostic tokenizer that con-
siders each input as a raw stream without assuming any
pre-tokenization, which matches greatly with genome se-
quences where the definitions of word and sentence do
not exist. BPE is a compression algorithm that has been
widely used in the area of natural language processing
as a word segmentation strategy. It learns a fixed-sized

vocabulary of variable-length tokens based on the co-occurrence frequency of the characters. Figure 2 illustrates the
process of constructing a vocabulary from a given corpus with BPE. First, we initialize the vocabulary with all unique
characters in the corpus. Then, in each iteration, we view the most frequent character segment (e.g., TA at iteration 1)
as a new word, add it to the vocabulary, and update the corpus by replacing all the same segments with this new word.
The iteration continues till we achieve the desired number of words in the vocabulary. Thus, the target vocabulary size
plays a crucial role.

Due to the significant difference between natural language and DNA sequence, vocabulary sizes that are commonly
used in the NLP area [Kenton and Toutanova, 2019; OpenAI, 2023; Raffel et al., 2020; Vaswani et al., 2017] may not
be appropriate for genome sequences. To determine the most suitable vocabulary size, we constructed 8 vocabularies
with target sizes ranging from 2

8 to 2
15 on the multi-species genomes (see Sec. 4.1) to empirically evaluate the impact

of varying vocabulary sizes. As indicated in Figure 3a, larger vocabularies tend to encompass more lengthy tokens,
which enables the tokenizer to represent the same input sequence with fewer tokens. Shorter tokenized sequences
consequently reduce the computational cost (See Figure 3b), as the computational complexity of Transformers is
quadratic in relation to the input sequence length. Therefore, from the computation efficiency perspective, a larger
vocabulary size is favorable.

However, a larger vocabulary leads to more sparse updates to the embedding layer, given that each token would be used
less frequently, which might compromise the model’s performance. We empirically analyzed this issue by pre-training
three different DNABERT-2 variants with vocabulary sizes of 28, 212, and 2

15 on the multi-species genome dataset with
a batch size of 2048 for 150000 steps and evaluating them on the GUE benchmark (see Sec. 4.2). Figure 3c displays
the performance of each variant, where the model performance is measured by the dataset- and task-average scores. As
depicted in the figure, unlike computational efficiency, the model’s performance does not consistently improve as the
vocabulary size increases. Therefore, we selected a vocabulary size of 212 = 4096 for training the final DNABERT-2
model, as it best balances model performance with computational efficiency among the candidates.

3.2 Model

DNABERT-2 adapts the Transformer Encoder architecture similar to BERT [Kenton and Toutanova, 2019]. To address
the limitations of existing models, we incorporate a series of recent advances in deep learning to increase the model’s
efficiency and capability, including: 1) replacing learned positional embeddings with the Attention with Linear Biases
(ALiBi) [Press et al., 2021] to overcome the input length limitation; 2) utilizing FlashAttention [Dao et al., 2022] and
Low Precision Layer Normalization to increase computation and memory efficiency; 3) employing the Low-Rank
Adaptation (LoRA) [Hu et al., 2021] in the fine-tuning stage (if necessary) for parameter-efficient training.

Attention with Linear Biases. Due to the permutation-invariant nature of the attention mechanism, explicit positional
information is required in attention-based models. Existing solutions such as Sinusoidal [Vaswani et al., 2017], learned
[Kenton and Toutanova, 2019], and Rotary [Su et al., 2021] positional embedding methods either suffer from input
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Figure 3: This figure presents the average token length, average sequence length reduced after tokenization, and model
performance on the GUE benchmark with different vocabulary sizes.

length restriction or poor extrapolation capability when applied to sequences longer than training data. Attention with
Linear Biases (ALiBi) provides an efficient yet effective solution. Instead of adding position embeddings to the input,
ALiBi adds a fixed set of static, non-learned biases to each attention calculation to incorporate positional information into
attention scores. Specifically, let qi define the i-th query in the input sequence of length L and K defines the key matrix,
the attention score of query i is calculated as: softmax(qiK+m∗[−(i−1), ...,−2,−1, 0,−1,−2, ...,−(L−1−i)]),
where m is a fixed head-specific constant. ALiBi used a geometric sequence (i.e., 1

21
, 1
22
, ..., 1

2n
) of different m to each

attention head. Intuitively, ALiBi increasingly penalizes attention scores between key-query pairs as their distances
increase, and m determines the penalty rate. Replacing learned position embedding with ALiBi allows DNABERT-2 to
effectively handle arbitrarily long sequences during fine-tuning and inference despite being pre-trained on relatively
short sequences.

Flash Attention. Flash attention is an IO-aware algorithm that implements the exact standard attention calculation in
a more time- and memory-efficient way. It identifies a main bottleneck of standard attention implementation as the lack
of taking the number of reads and writes to fast GPU on-chip SRAM and relatively slow GPU high bandwidth memory
(HBM) into account. To avoid reading and writing to the slow HBM, it splits Key/Query/Value matrices into blocks
and incrementally performs softmax over the entire input. It also proposes to recompute large intermediate results like
attention scores in backward pass to trade extra computation for fewer IO with HBM, which empirically leads to less
computational time. It accelerates DNABERT-2 without sacrificing model performance.

Low-Rank Adaptation (LoRA). Fine-tuning all the parameters of a model becomes increasingly expensive as
the pre-trained model becomes much larger. Thus, we adopt LoRA, a parameter-efficient fine-tuning method that
significantly reduces the computation and memory costs with ignorable performance sacrifice. Let W0,W1 ∈ Rm×n

define the same weight matrix before and after task-specific fine-tuning, and we have W1 = W0 + ∆W , where
∆W ∈ Rm×n represents the change of each weight element during the fine-tuning. In ordinary fine-tuning, we
independently update each weight based on its corresponding gradient, while in LoRA, we represent ∆W with a
low-rank decomposition ∆W = BA, where B ∈ Rm×r, A ∈ Rr×n, and r ≪ m, r ≪ n. Modeling ∆W with
low-rank decomposition reduces the number of trainable parameters from m × n to r × (m + n), leading to significant
improvement in training time and memory usage.

Besides, we replace the Relu activation function with GEGLU [Shazeer, 2020], a variant of GLU [Dauphin et al.,
2017] that has been shown to improve the performance of Transformer models. The GEGLU function is calculated as
GEGLU(x,W, V, b, c) = GELU(xW + b)⊗ (xV + c), where x is the function input, W and V are learnable weights,
and b and c are learnable biases. The GELU function is defined as GELU(x) = xΦ(x), where Φ(x) is the cumulative
distribution function (CDF) of the standard normal distribution.
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Species Task Num. Datasets Num. Classes Sequence Length

Human

Core Promoter Detection 3 2 70
Transcription Factor Prediction 5 2 100
Promoter Detection 3 2 300
Splice Site Detection 1 3 400

Mouse Transcription Factor Prediction 5 2 100

Yeast Epigenetic Marks Prediction 10 2 500

Virus Covid Variant Classification 1 9 1000

Table 1: Summarization of the Genome Understanding Evaluation (GUE) benchmark.

3.3 Implementation

We pre-train DNABERT-2 with the Masked Language Modeling (MLM) loss with a mask ratio of 15%. Notably, we
independently mask every token instead of masking spans of continuous tokens like Ji et al. [2021]. We use a batch
size of 4096 and a max sequence length of 128. We train the model for 500000 steps using the AdamW [Loshchilov
and Hutter, 2019] optimizer with β1 = 0.9, β2 = 0.98, ϵ = 1e-6 and weight decay of 1e-5. The learning rate linearly
increases from 0 to 5e-4 during the first 30000 steps while linearly decreasing to 0 in the last 470000 steps. The
pre-training stage takes approximately 14 days using eight Nvidia RTX 2080Ti GPUs. To train the model, we used the
Transformers library by HuggingFace [Wolf et al., 2020] and the Composer library by MosaicML [Team, 2021].

4 Data

In order to facilitate further research on large-scale genome foundational models, we have collated and made available
multi-species genome datasets for both pre-training of models (Sec. 4.1) and benchmarking (Sec. 4.2).

4.1 Pre-Train: Human and Multi-Species Genome

To investigate the impact of species diversity on genome foundational models, we’ve compiled and made publicly
available two datasets for foundational model pre-training: the human genome and the multi-species genome. The
human genome dataset is borrowed from DNABERT’s pre-training data [Ji et al., 2021], which comprises 2.75B
nucleotide bases. The multi-species genome dataset encompasses genomes from 135 species, spread across 7 categories.
In total, this dataset includes 32.49B nucleotide bases, nearly 12 times the volume of the human genome dataset. We
exclude all sequences with N and retain only sequences that consist of A, T, C, and G. Detailed statistics are presented in
Table 7.

4.2 Benckmark: Genome Understanding Evaluation (GUE)

We introduce the Genome Understanding Evaluation (GUE) benchmark, which includes 7 genome sequence classifi-
cation problems with 28 datasets. Table 1 presents the summarization of the GUE benchmark. To evaluate models’
capability in modeling sequences with different lengths, we select datasets with input lengths ranging from 70 to 1000.
GUE contains tasks for 4 species: human, mouse, virus, and yeast, to evaluate the multi-species transferability in
genome understanding of each model. We explicitly define evaluation metrics for each task and split each dataset into
training, validation, and test data for a fair comparison across different models.

To calibrate the GUE benchmark’s difficulty level and better illuminate each model’s capabilities, we carefully selected
datasets that are neither too simple nor overly challenging for current models. For example, when the Nucleotide
Transformer variants [Lopez et al., 2023] were tested on the Splice Site Prediction dataset, all variants achieved an
accuracy between 97% and 98%. Similar outcomes were observed in tasks like Promoter Prediction and Enhancer
Prediction. These high scores might suggest these variants perform similarly, but as our experiments in Section 5 show,
they vary significantly on more discerning datasets.

The construction of GUE starts with the aggregation of various biologically important genome analysis datasets,
followed by the assessment of existing models such as DNABERT [Ji et al., 2021] and Nucleotide Transformer [Lopez
et al., 2023] on these datasets. Datasets where the majority of models yielded moderate (e.g., F1-scores between 0.3 and
0.8) and distinguishable performance scores were retained. On the other hand, datasets that did not meet these criteria
underwent a restructuring process involving various strategies such as class balancing, adversarial sample inclusion,
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and reduction of training sample volume, among others. After several iterations of this process, we ultimately arrived
at 28 representative datasets of moderate difficulty. Due to space limits, we present the detailed data processing and
statistics of each dataset in Sec. B.2.

5 Experiments

We evaluate DNABERT-2 using the proposed GUE benchmark to thoroughly investigate its versatility and robustness
across a variety of tasks involving multi-species genomes.

5.1 Baseline

We compare DNABERT-2 with two state-of-the-art genome foundation models: DNABERT [Ji et al., 2021] and
Nucleotide Transformer [Lopez et al., 2023].

DNABERT was the first pre-trained foundational model for genome sequences, trained on human genome sequences.
It has four variants, namely DNABERT (3-mer), DNABERT (4-mer), DNABERT (5-mer), and DNABERT (6-mer),
which utilize overlapping 3/4/5/6-kmer tokenization respectively. While DNABERT employs the same architecture as
BERT-base, it has a different vocabulary size, which is dependent on the chosen k-mer.

Nucleotide Transformer (NT) scales up the data and model size to achieve state-of-the-art performance in 27 DNA
analysis tasks. It also has 4 variants: NT-500M-human, NT-500M-1000g, NT-2500M-1000g, and NT-2500M-multi,
where human, 1000g, and multi respectively refers to the GRCh38/hg38 human reference genome, 3202 high-coverage
human genomes from the 1000 Genome project [Byrska-Bishop et al., 2021], and genome from 850 different species.

It is important to note that NT models are 6 to 29 times larger than DNABERT, which precludes standard model
fine-tuning on consumer GPUs. Therefore, we perform standard fine-tuning for DNABERT and DNABERT-2, while
adapting the Low-Rank Adaptation (LoRA) technique for fine-tuning the Nucleotide Transformer to enhance efficiency.
For a fair comparison, we conducted preliminary experiments to confirm that our implementation of NT achieves
comparable results to those reported in their original paper [Lopez et al., 2023] (see Appendix A.3 for more details).

5.2 Setup and Metric

We evaluate the models from two perspectives: computational efficiency and performance on downstream tasks. To
measure each model’s computational cost, we consider the number of model parameters and the relative Floating
Point Operations (FLOPs)—which is the total number of multiplication and addition operations during a forward
pass—compared to DNABERT-2. We evaluate FLOPs on genome sequences with a length of 500, a commonly used
setup in genome analysis. To measure model performance, we utilize F1-Score and Matthews Correlation Coefficient
(MCC). We use different metrics for different tasks, following conventional practices (refer to Table 8 for details). Table
2 presents the overall performance of each model on the GUE benchmark. It provides the average score of each model
and the number of times it ranks in the top two among all models. The average results across all tasks are reported in
Table 3, while task-specific results can be found in 4, with full details relegated to this section due to space constraints.
We also include statistics on the number of tokens each model processed during its pre-training phase, providing insight
into the effects of training steps on model performance. For each model, we keep most of the hyperparameters (e.g.,
learning rate, batch size, weight decay, etc.) constant across all datasets, adjusting only the maximum sequence length
and the number of training steps according to the specific dataset. Hyperparameter tuning tailored to each dataset is left
for future work. Throughout the training process, we validate the model every 200 steps, save the model that yields
the smallest loss on the validation set, and report its evaluation results on the test set. We train each model using three
different random seeds and report the average results.

Further Pre-Training. We also investigate the impact of additional in-domain pre-training on DNA language models.
We combine the training sets of the 28 GUE datasets and further pre-train DNABERT-2 on this combined set. Following
Sun et al. [2020], we train the model with a batch size of 32, a maximum sequence length of 128, and a learning rate
of 5e-5 for 100,000 steps. This results in the processing of 0.41B tokens, which only constitute 0.08% of the tokens
processed during the entire training process of DNABERT-2.

5.3 Main Results

Table 2 outlines the statistics and aggregate performance of the models. As indicated in the table, despite being
21× smaller and requiring 19× fewer FLOPs, DNABERT-2 delivers a performance comparable to the state-of-the-art
model while significantly surpassing other baselines. When DNABERT-2 undergoes additional pre-training on the

7



Model Num. Params. ↓ FLOPs ↓ Trn. Tokens Num. Top-2 ↑ Ave. Scores ↑

DNABERT (3-mer) 86M 3.27 122B 2 ∥ 0 61.62
DNABERT (4-mer) 86M 3.26 122B 0 ∥ 1 61.14
DNABERT (5-mer) 87M 3.26 122B 0 ∥ 1 60.05
DNABERT (6-mer) 89M 3.25 122B 0 ∥ 1 60.51
NT-500M-human 480M 3.19 50B 0 ∥ 0 55.43
NT-500M-1000g 480M 3.19 50B 0 ∥ 1 58.23
NT-2500M-1000g 2537M 19.44 300B 0 ∥ 1 61.41
NT-2500M-multi 2537M 19.44 300B 7 ∥ 9 66.93

DNABERT-2 117M 1.00 262B 8 ∥ 4 66.80
DNABERT-2♦ 117M 1.00 263B 11 ∥ 10 67.77

Table 2: The statistics and performance of each model. The five columns represent the number of model parameters,
relative FLOPs compared to DNABERT-2, the number of tokens used in pre-training, and the number of being top-2
among all the models (1st ∥ 2nd) and the average evaluation scores on the 28 datasets of the GUE benchmark. ♦:
perform further masked language modeling pre-training on the training sets of the GUE benchmark.

Yeast Mouse Virus Human

EMP TF-M CVC TF-H PD CPD SSP

DNABERT (3-mer) 49.54 57.73 62.23 64.43 84.63 72.96 84.14
DNABERT (4-mer) 48.59 59.58 59.87 64.41 82.99 71.10 84.05
DNABERT (5-mer) 48.62 54.85 63.64 50.46 84.04 72.03 84.02
DNABERT (6-mer) 49.10 56.43 55.50 64.17 81.70 71.81 84.07
NT-500M-human 45.35 45.24 57.13 50.82 85.51 66.54 79.71
NT-500M-1000g 47.68 49.31 52.06 58.92 86.58 69.13 80.97
NT-2500M-1000g 50.86 56.82 66.73 61.99 86.61 68.17 85.78
NT-2500M-multi 58.06 67.01 73.04 63.32 88.14 71.62 89.36

DNABERT-2 55.98 67.99 71.02 70.10 84.21 70.52 84.99
DNABERT-2♦ 58.83 71.21 68.49 66.84 83.81 71.07 85.93

Table 3: The models’ averaged performance on the 8 tasks in the GUE benchmark, including Epigenetic Marks Prediction (EMP),
Transcription Factor Prediction on the Human genome and the Mouse genome (TF-H and TF-M), Covid Variants Classification
(CVC), Promoter Detection (PD), Core Promoter Detection (CPD), and Splice Site Prediction (SSP).

GUE benchmark, which requires negligible computational overhead, it delivers the highest average performance and
consistently ranks in the top two across the 28 tasks of the GUE benchmark. These results showcase the model’s
remarkable efficiency and effectiveness.

Despite having 30% more parameters than DNABERT, DNABERT-2 requires only one-third the number of FLOPs.
This indicates the superiority of the Byte Pair Encoding (BPE)-based tokenization method over overlapping k-mer
tokenization in terms of modeling efficiency. Armed with the new tokenization method and the Attention with Linear
Biases (ALiBi) module, DNABERT-2 can effectively process long genome sequences arbitrarily, demonstrating
enhanced efficiency. This improvement becomes even more significant as the length of the input sequence increases.
Moreover, DNABERT-2 consistently outperforms DNABERT by a large margin, indicating the effectiveness of
multi-species pre-training and new model architecture.

Although DNABERT-2 is 5 times smaller, it surpasses NT-500M while using less FLOPs. This underscores the
importance of providing the model with adequate data, particularly when the model size is scaled up, and further
highlights the inefficiency of overlapping k-mer tokenization. The comparison between DNABERT and NT-2500M-
1000g exposes the sample inefficiency of non-overlapping k-mer tokenization. Despite being trained on 2.5 times more
tokens, NT-2500M-1000g achieves a performance similar to that of DNABERT.

The averaged results for each task are displayed in Table 3. DNABERT-2 and NT-2500M-multi consistently achieve
top-tier performance across most tasks. Their dominance over other baselines is particularly notable in non-human
genome analysis tasks, demonstrating the effectiveness of pre-training on multi-species genomes. Furthermore, models
trained on multi-species genomes also show strong performance on human genome analysis tasks, proving their ability
to develop a comprehensive understanding of multi-species genomes without compromising their grasp of the human
genome. However, we observe that additional pre-training does not uniformly enhance performance across all tasks,
indicating that task-specific further pre-training might be beneficial when addressing a certain downstream task.
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Additionally, DNABERT variants achieve optimal performance in the Core Promoter Detection task, where inputs
are sequences of length 70. However, their performance diminishes in the similar task of Promoter Detection, where
the input length increases to 300. These results highlight a common challenge associated with non-overlapping k-mer
tokenization and BPE-based tokenization: the capacity to identify subtle signals from limited input. Although inefficient,
the overlapping k-mer tokenization adopted by DNABERT retains most of the information in the original sequences.
In contrast, the sequence length is significantly reduced (i.e., from 70 to 15) with non-overlapping k-mer and BPE
tokenization, which might limit the retained information and hinder informed decision-making. This identifies a critical
area for future exploration in DNA language models.

6 Conclusion

In this paper, we introduce DNABERT-2, an efficient foundational model pre-trained on extensive multi-species genomes.
We identify the computational and sample inefficiencies of the existing k-mer tokenization method and propose the
adaptation of Byte Pair Encoding (BPE) for DNA language modeling. We provide insightful and comprehensive
empirical analyses, building DNABERT-2 based on these findings. Moreover, we integrate several techniques such
as Attention with Linear Biases (ALiBi) and Low-Rank Adaptation (LoRA) to address the limitations of current
DNA language models. From a data perspective, we compile and introduce the Genome Understanding Evaluation
(GUE), a benchmark for multi-species genome analysis comprising seven tasks and 28 datasets with well-defined
training, validation, test sets, clear evaluation metrics, and elaborately calibrate difficulty. In addition, we release a
multi-species genome dataset consisting of 32.49 billion nucleotide bases derived from the genomes of 135 species
across seven categories. We believe these datasets will significantly contribute to the progression of research on DNA
language models. For future work, we identify several promising directions: 1) the development of effective modeling
strategies for short genome sequences; 2) scaling up the model size; and 3) the introduction of training targets and data
processing/augmentation methods that leverage the unique double-strand structure of DNA.
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A Experiments

A.1 All Experiment Results

Epigenetic Marks Prediction

H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT (3-mer) 74.15 42.07 48.49 42.95 31.34 28.92
DNABERT (4-mer) 73.03 41.88 48.03 41.06 30.66 25.31
DNABERT (5-mer) 73.40 40.68 48.29 40.65 30.67 27.10
DNABERT (6-mer) 73.10 40.06 47.25 41.44 32.27 27.81
NT-500M-human 69.67 33.55 44.14 37.15 30.87 24.06
NT-500M-1000g 72.52 39.37 45.58 40.45 31.05 26.16
NT-2500M-1000g 74.61 44.08 50.86 43.10 30.28 30.87
NT-2500M-multi 78.77 56.20 61.99 55.30 36.49 40.34

DNABERT-2 78.27 52.57 56.88 50.52 31.13 36.27
DNABERT-2♦ 80.17 57.42 61.90 53.00 39.89 41.20

Epigenetic Marks Prediction Promoter Detection

H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT (3-mer) 60.12 50.48 78.27 38.60 90.44 93.61 69.83
DNABERT (4-mer) 59.77 51.44 78.28 36.40 89.54 92.65 66.78
DNABERT (5-mer) 59.61 51.11 77.27 37.48 90.16 92.45 69.51
DNABERT (6-mer) 61.17 51.22 79.26 37.43 90.48 93.05 61.56
NT-500M-human 58.35 45.81 76.17 33.74 87.71 90.75 78.07
NT-500M-1000g 59.33 49.29 76.29 36.79 89.76 91.75 78.23
NT-2500M-1000g 61.20 52.36 79.76 41.46 90.95 93.07 75.80
NT-2500M-multi 64.70 56.01 81.67 49.13 91.01 94.00 79.43

DNABERT-2 67.39 55.63 80.71 50.43 86.77 94.27 71.59
DNABERT-2♦ 65.46 57.07 81.86 50.35 88.31 94.34 68.79

Transcription Factor Prediction (Human) Core Promoter Detection

0 1 2 3 4 all notata tata

DNABERT (3-mer) 67.95 70.90 60.51 53.03 69.76 70.92 69.82 78.15
DNABERT (4-mer) 67.90 73.05 59.52 50.37 71.23 69.00 70.04 74.25
DNABERT (5-mer) 66.97 69.98 59.03 52.95 69.26 69.48 69.81 76.79
DNABERT (6-mer) 66.84 70.14 61.03 51.89 70.97 68.90 70.47 76.06
NT-500M-human 61.59 66.75 53.58 42.95 60.81 63.45 64.82 71.34
NT-500M-1000g 63.64 70.17 52.73 45.24 62.82 66.70 67.17 73.52
NT-2500M-1000g 66.31 68.30 58.70 49.08 67.59 67.39 67.46 69.66
NT-2500M-multi 66.64 70.28 58.72 51.65 69.34 70.33 71.58 72.97

DNABERT-2 71.99 76.06 66.52 58.54 77.43 69.37 68.04 74.17
DNABERT-2♦ 69.12 71.87 62.96 55.35 74.94 67.50 69.53 76.18

Transcription Factor Prediction (Mouse) Virus Splice

0 1 2 3 4 Covid Reconstruct

DNABERT (3-mer) 42.31 79.10 69.90 55.40 41.97 62.23 84.14
DNABERT (4-mer) 49.42 79.95 72.62 51.79 44.13 59.87 84.05
DNABERT (5-mer) 42.45 79.32 62.22 49.92 40.34 50.46 84.02
DNABERT (6-mer) 44.42 78.94 71.44 44.89 42.48 55.50 84.07
NT-500M-human 31.04 75.04 61.67 29.17 29.27 50.82 79.71
NT-500M-1000g 39.26 75.49 64.70 33.07 34.01 52.06 80.97
NT-2500M-1000g 48.31 80.02 70.14 42.25 43.40 66.73 85.78
NT-2500M-multi 63.31 83.76 71.52 69.44 47.07 73.04 89.35

DNABERT-2 56.76 84.77 79.32 66.47 52.66 71.02 84.99
DNABERT-2♦ 64.23 86.28 81.28 73.49 50.80 68.49 85.93

Table 4: This table presents the performance of all the models on the GUE benchmark. ♦: perform further pre-training
on the training sets of the GUE benchmark.
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EMP TF-M CVC TF-H PD-tata PD-other CPD-tata CPD-other SSP

Num. Epochs 3 1k steps 8 3 10 4 10 4 5

Table 5: The number of training steps we used for the following tasks: Epigenetic Marks Prediction (EMP), Transcription Factor
Prediction on the Human genome and the Mouse genome (TF-H and TF-M), Covid Variants Classification (CVC), tata dataset of
Promoter Detection (PD-tata), notata and all datasets of Promoter Detection (PD-other), tata dataset of Core Promoter Detection
(CPD-tata), notata and all datasets of Core Promoter Detection (CPD-other), and Splice Site Prediction (SSP).

A.2 Hyperparameters

This section presents the hyperparameters we used in the fine-tuning stage on each model. Table 5 shows the number of
training steps we used for each task. We use AdamW [Loshchilov and Hutter, 2019] as optimizer. We keep most of the
other hyperparameters the same for all the models across all the datasets, including a batch size of 32, a warmup step of
50, and a weight decay of 0.01. For DNABERT and DNABERT-2, we perform standard fine-tuning with a learning rate
of 3e-5, while for the Nucleotide Transformers, we perform parameter efficient fine-tuning (PEFT) using Low-Rank
Adaptation (LoRA) with a learning rate of 1e-4, a LoRA alpha of 16, a LoRA dropout of 0.05, and a LoRA r of 8. The
hyperparameters are selected based on grid searches over commonly used ones in preliminary experiments.

A.3 Preliminary Experiments on Nucleotide Transformer

Since there is no official fine-tuning code of Nucleotide Transformer [Lopez et al., 2023], we use its open-sourced
checkpoints in Huggingface Modelhub2 and train it with our code base using LoRA. For a fair comparison with this
model, in this section, we present preliminary experiments that compare the results reported in their paper with the
performance of this model under our implementation. We select the epigenetic marks prediction task for benchmarking
since it is the only shared task among Lopez et al. [2023] and GUE. The task contains 10 datasets. For each dataset, we
randomly split it into training and test sets with a ratio of 9:1. As shown in Table 6, our LoRA implementation leads
to slightly better results than the results reported in the original paper, making our comparison to the model fair and
convincing despite the fact that we do not have access to its official fine-tuning implementation.

H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

500M-human* 72.00 37.00 45.00 36.00 27.00 24.00
500M-human 69.67 33.55 44.14 37.15 30.87 24.06

500M-1000g* 74.00 38.00 47.00 38.00 26.00 24.00
500M-1000g 72.52 39.37 45.58 40.45 31.05 26.16

2500M-1000g* 75.00 45.00 53.00 42.00 28.00 31.00
2500M-1000g 74.61 44.08 50.86 43.10 30.28 30.87

2500M-multi* 79.00 54.00 62.00 54.00 32.00 41.00
2500M-multi 78.77 56.20 61.99 55.30 36.49 40.34

H3K79me3 H3K9ac H4 H4ac Average

500M-human* 57.00 45.00 75.00 33.00 45.10
500M-human 58.35 45.81 76.17 33.74 45.35

500M-1000g* 56.00 48.00 76.00 34.00 46.10
500M-1000g 59.33 49.29 76.29 36.79 47.68

2500M-1000g* 57.00 49.00 79.00 41.00 50.00
2500M-1000g 61.20 52.36 79.76 41.46 50.86

2500M-multi* 62.00 55.00 81.00 49.00 56.90
2500M-multi 64.70 56.01 81.67 49.13 58.06

Table 6: This table presents the performance of the Nucleotide Transformer on ten datasets of epigenetic marks
prediction on the Yeast genome. As shown in the table, our implementation achieves better performance than the results
reported in the paper, indicating the fairness of comparison in our experiments. *: Results taken from Lopez et al.
[2023].

2https://huggingface.co/InstaDeepAI
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B Data

B.1 Multi-Species Genome for Pre-Training

Table 7 lists the 135 species in 7 categories that we randomly selected for genome foundation model pre-training and
presents the number of nucleotides we achieved from each species.

Category Species Num. of Nucleotides (M)

Fungi

Ceratobasidium 655.37
Claviceps Maximensis 329.79
Fusarium Annulatum 449.98
Melampsora 699.52
Metschnikowia 109.36
Mucor Saturninus 391.17
Penicillium Chermesinum 275.81
Saccharomyces Cerevisiae 121.54
Sporopachydermia Quercuum 155.71
Tranzscheliella Williamsii 184.77
Xylariales 399.96

Protozoa Phytophthora Sojae 792.65
Pythium Apiculatum 450.99

Mammalian

Bubalus Bubalis 28768.00
Camelus Dromedarius 19757.02
Human 31372.10
Macaca Assamensis 27593.76
Macaca Nigra 28217.13
Mus Musculus 26545.98
Peromyscus Californicus 24677.56

Anas Zonorhyncha 11697.08
Other Coregonus Clupeaformis 26824.02
Vertebrate Gnathonemus Longibarbis 7314.74

Myxocyprinus Asiaticus 23407.19
Rhipidura Dahli 10112.96

Bacteria

Aeromonas 47.33
Agrobacterium 97.22
Alcaligenaceae Bacterium 20.88
Aliivibrio 46.48
Alphaproteobacteria Bacterium 14.22
Amycolatopsis Antarctica 63.43
Anaerostipes Faecis 32.00
Arthrobacter 36.27
Atopobium 28.63
Bacillus Bc15 57.34
Bacillus Bs3 2021 43.51
Bacterium 7.54
Bacteroidetes Bacterium Qs 8.99
Breoghania Corrubedonensis 53.32
Caldicoprobacter Oshimai 27.25
Candidatus Cryptobacteroides Excrementipullorum 27.63
Candidatus Dadabacteria Bacterium Rbg Combo 11.49
Candidatus Dwaynia Gallinarum 16.82
Candidatus Falkowbacteria Bacterium 13.88
Candidatus Geothermincola Secundus 24.76
Candidatus Gottesmanbacteria Bacterium 11.08
Candidatus Nomurabacteria Bacterium Full 6.29
Candidatus Portnoybacteria Bacterium Big Fil Rev 8.17

(Continued on next page)
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(Continued from previous page)

Category Species Num. of Nucleotides (M)
Candidatus Regiella Insecticola 20.62
Candidatus Roizmanbacteria Bacterium Combo All 11.13
Candidatus Rokubacteria Bacterium 22.06
Candidatus Saccharibacteria Bacterium 6.55
Candidatus Staskawiczbacteria Bacterium Full 6.79
Christensenella 18.75
Clostridiaceae Bacterium 29.62
Clostridiales Bacterium 16.59
Clostridium Cag 505 21.26
Clostridium Mcc328 36.43
Clostridium Nexile 38.43
Clostridium Uba3521 25.99
Collinsella Urealyticum 19.45
Coprobacillus Cateniformis 38.38
Cyanobium 40.33
Dehalococcoidia Bacterium 17.59
Enterobacteriaceae Bacterium 41.46
Evtepia Gabavorous 24.94
Firmicutes Bacterium 36.66
Fulvivirga 65.24

Bacteria Jeongeupia Chitinilytica 39.11
Legionella Endosymbiont Of Polyplax Serrata 5.30
Listeria Ilorinensis 30.31
Maribacter Cobaltidurans 46.40
Marinomonas 37.73
Mesorhizobium 65.15
Methyloceanibacter Caenitepidi 34.25
Microvirga 68.63
Mycolicibacter Engbaekii 45.21
Novosphingobium 46.18
Omnitrophica Wor Bacterium Rbg 12.52
Pantoea 43.14
Paraburkholderia Edwinii 82.99
Parerythrobacter Lutipelagi 30.98
Paulownia Witches Phytoplasma 8.92
Polaromonas Eurypsychrophila 41.61
Prevotella Ag 487 50 53 29.63
Prevotella Uba3619 31.72
Prevotella Uba634 18.51
Prochlorococcus Ag-321-I09 3.29
Prochlorococcus Ag-363-B18 15.54
Prochlorococcus Ag-402-L19 11.17
Prochlorococcus Scb243 498N4 14.12
Providencia 41.89
Pseudomonas 35 E 8 63.56
Pseudomonas Bigb0408 59.52
Pseudomonas P867 62.01
Pseudomonas Promysalinigenes 50.47
Roseobacter 44.14
Salinicola Peritrichatus 46.19
Salmonella S096 02912 48.09
Salmonella Zj-F75 47.87
Sinorhizobium 65.53
Sodalis Ligni 63.85
Sphaerochaeta 28.61

(Continued on next page)
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(Continued from previous page)

Category Species Num. of Nucleotides (M)
Sphingobacterium 36.55
Sphingomonas Carotinifaciens 37.53
Sphingomonas Mesophila 22.91
Sporosarcina Jiandibaonis 36.30
Sporosarcina Ureilytica 34.37
Staphylococcus Gdq20D1P 28.50
Staphylococcus M0911 24.38
Streptococcus 22.18

Bacteria Streptomyces 8401 88.39
Streptomyces Di166 88.71
Streptomyces Durbertensis 59.24
Streptomyces Neau-Yj-81 118.84
Streptomyces Rk74B 87.36
Thermopetrobacter 26.06
Uncultured Kushneria 35.31
Uncultured Phascolarctobacterium 17.95
Uncultured Proteus 35.66
Verrucomicrobiales Bacterium 3.15
Vibrio 41.47
Victivallis Lenta 55.45
Virgibacillus Salexigens 44.18
Xanthomonadales Bacterium 37.47

Table 7: Details statistics of the multi-species genome dataset for pre-training.

B.2 Genome Understanding Evaluation (GUE)

The proposed benchmark Genome Understanding Evaluation (GUE) contains 28 datasets of 7 biological important
genome analysis tasks for 4 different species. To comprehensively evaluate the genome foundation models in modeling
variable-length sequences, we select tasks with input lengths ranging from 70 to 1000. Table 8 presents the details
statistics of each evaluation dataset. The following tasks are included in the GUE benchmark.

Promoter detection (Human) focuses on identifying (proximal) promoter regions, crucial sequences in the human
genome responsible for instigating transcription. As many primary regulatory elements are located in this region,
accurately detecting these sites is instrumental in advancing our grasp of gene regulation mechanisms and pinpointing
the genomic underpinnings of numerous diseases. The dataset is divided twofold, TATA and non-TATA, based on
whether a TATA box motif is present in the sequence. We extract -249 +50 bp around the transcription start site (TSS)
from TATA and non-TATA promoters downloaded from Eukaryotic Promoter Database (EPDnew) [Dreos et al., 2013]
and use it as our promoter class. Meanwhile, we construct the non-promoter class with equal-sized randomly selected
sequences outside of promoter regions but with TATA motif (TATA non-promoters) or randomly substituted sequences
(non-TATA, non-promoters). We also combine the TATA and non-TATA datasets to obtain a combined dataset named
all.

Core promoter detection (Human) is similar to proximal promoter detection with a focus on predicting the core
promoter region only, the central region closest to the TSS and start codon. A much shorter context window (center
-34 +35 bp around TSS) is provided, making this a more challenging task than proximal promoter prediction.

Transcription factor binding site prediction (Human) predicts binding sites of transcription factors (TF), the key
proteins that regulate gene expression in the human genome. Their accurate prediction is key to deciphering complex
genetic interactions and identifying potential targets for gene therapies. We accessed the legacy 690 ENCODE ChIP-seq
experiments [Consortium et al., 2012] via the UCSC genome browser, which encompasses 161 TF binding profiles in
91 human cell lines. We extracted a 101-bp region around the center of each peak as TFBS class and nonoverlapping
sequences with the same length and GC content as non-TFBS class. Finally, we randomly select 5 datasets out of a
subset of 690 that we curated by heuristically filtering out tasks that are either too trivial (e.g., over 0.95 F1) or too
challenging (e.g., less than 0.50 F1) for existing language models.
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Task Metric Datasets Train / Dev / Test

Core Promoter Detection mcc
tata 4904 / 613 / 613
notata 42452 / 5307 / 5307
all 47356 / 5920 / 5920

Promoter Detection mcc
tata 4904 / 613 / 613
notata 42452 / 5307 / 5307
all 47356 / 5920 / 5920

Transcription Factor mcc

wgEncodeEH000552 32378 / 1000 / 1000
wgEncodeEH000606 30672 / 1000 / 1000
wgEncodeEH001546 19000 / 1000 / 1000

Prediction (Human) wgEncodeEH001776 27294 / 1000 / 1000
wgEncodeEH002829 19000 / 1000 / 1000

Splice Site Prediction mcc reconstructed 36496 / 4562 / 4562

Transcription Factor mcc

Ch12Nrf2Iggrab 6478 / 810 / 810
Ch12Znf384hpa004051Iggrab 53952 / 6745 / 6745
MelJundIggrab 2620 / 328 / 328

prediction (Mouse) MelMafkDm2p5dStd 1904 / 239 / 239
MelNelfeIggrab 15064 / 1883 / 1883

Epigenetic Marks Prediction mcc

H3 11971 / 1497 / 1497
H3K14ac 26438 / 3305 / 3305
H3K36me3 27904 / 3488 / 3488
H3K4me1 25341 / 3168 / 3168
H3K4me2 24545 / 3069 / 3069
H3K4me3 29439 / 3680 / 3680
H3K79me3 23069 / 2884 / 2884
H3K9ac 22224 / 2779 / 2779
H4 11679 / 1461 / 1461
H4ac 27275 / 3410 / 3410

Virus f1 Covid variant classification 77669 / 7000 / 7000

Table 8: Statistics of tasks in the GUE benchmark, including the name and the number of training, validation, and test samples in
each dataset.

Splice site prediction (Human) predicts splice donor and acceptor sites, which are the exact locations in the
human genome where alternative splicing occurs. This prediction is crucial to understanding protein diversity and the
implications of aberrant splicing in genetic disorders. The dataset [Wang et al., 2019] consists of 400-bp-long sequences
extracted from Ensembl GRCh38 human reference genome. As suggested by Ji et al. [2021], existing models can
achieve almost perfect performance on the original dataset, containing 10,000 splice donors, acceptors, and non-splice
site sequences, which is overly optimistic on detecting non-canonical sites in reality. As such, we reconstruct the dataset
by iteratively adding adversarial examples (unseen false positive predictions in hold-out set) in order to make this task
more challenging.

Transcription factor binding site prediction (Mouse) predicts the binding site of transcription factors on mouse
genomes. Similar to human binding site data, we obtain mouse ENCODE ChIP-seq data [Stamatoyannopoulos et al.,
2012], which is the largest available collection on the UCSC genome browser (n=78). This time, the negative examples
are created using dinucleotide shuffling while preserving relative frequencies, while all other settings stay the same as
the human TFBS prediction dataset. We also randomly select 5 datasets out of the 78 datasets using the same process
described above.

Epigenetic marks prediction (Yeast) predicts epigenetic marks in yeast, modifications on the genetic material that
influence gene expression without altering the DNA sequence. Precise prediction of these marks aids in elucidat-
ing the role of epigenetics in yeast. We download the 10 datasets from http://www.jaist.ac.jp/~tran/
nucleosome/members.htm and randomly split each dataset into training, validation, and test sets with a ratio of
8:1:1.

Covid variant prediction (Virus) aims to predict the variant type of the SARS_CoV_2 virus based on 1000-length
genome sequences. We download the genomes from the EpiCoV database [Khare et al., 2021] of the Global Initiative
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on Sharing Avian Influenza Data (GISAID). We consider 9 types of SARS_CoV_2 variants, including Alpha, Beta,
Delta, Eta, Gamma, Iota, Kappa, Lambda and Zeta.
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