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Abstract

Learning high-quality dialogue representations
is essential for solving a variety of dialogue-
oriented tasks, especially considering that dia-
logue systems often suffer from data scarcity.
In this paper, we introduce Dialogue Sen-
tence Embedding (DSE), a self-supervised con-
trastive learning method that learns effective di-
alogue representations suitable for a wide range
of dialogue tasks. DSE learns from dialogues
by taking consecutive utterances1 of the same
dialogue as positive pairs for contrastive learn-
ing. Despite its simplicity, DSE achieves sig-
nificantly better representation capability than
other dialogue representation and universal sen-
tence representation models. We evaluate DSE
on five downstream dialogue tasks that exam-
ine dialogue representation at different seman-
tic granularities. Experiments in few-shot and
zero-shot settings show that DSE outperforms
baselines by a large margin. For example, it
achieves 13% average performance improve-
ment over the strongest unsupervised baseline
in 1-shot intent classification on 6 datasets. 2

We also provide analyses on the benefits and
limitations of our model.

1 Introduction

Due to the variety of domains and the high cost of
data annotation, labeled data for task-oriented dia-
logue systems is often scarce or even unavailable.
Therefore, learning universal dialogue representa-
tions that effectively capture dialogue semantics
at different granularities (Hou et al., 2020; Krone
et al., 2020; Yu et al., 2021) provides a good foun-
dation for solving various downstream tasks (Snell
et al., 2017; Vinyals et al., 2016).

Contrastive learning (Chen et al., 2020; He et al.,
2020) has achieved widespread success in represen-

∗Work done during an internship at AWS AI Labs.
1Throughout this paper, we use utterance to refer to all

the sentences that belong to the same dialogue turn.
2The code and pre-trained models are publicly available

at https://github.com/amazon-research/dse.
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Figure 1: TSNE visualization of the dialogue repre-
sentations provides by TOD-BERT, SimCSE, and DSE.
Left: each color indicates one intent category, while the
black circles represents out-of-scope samples. Right:
items with the same color stands for query-response
pairs, where triangles represent queries. The black cir-
cles represents randomly sampled responses.

tations learning in both the image domain (Hjelm
et al., 2018; Lee et al., 2020; Bachman et al., 2019)
and the text domain (Gao et al., 2021; Zhang et al.,
2021a,b; Wu et al., 2020a). Contrastive learning
aims to reduce the distance between semantically
similar (positive) pairs and increase the distance
between semantically dissimilar (negative) pairs.
These positive pairs can be either human-annotated
or obtained through various data augmentations,
while negative pairs are often collected through
negative sampling in the mini-batch.

In the supervised learning regime, Gao et al.
(2021); Zhang et al. (2021a) demonstrate the ef-
fectiveness of leveraging the Natural Language
Inference (NLI) datasets (Bowman et al., 2015;
Williams et al., 2018) to support contrastive learn-
ing. Inspired by their success, a natural choice
of dialogue representation learning is utilizing the
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Pair 1: I am looking for restaurants. | What type of food do you like?

I am looking for restaurants.

I want some pizza.

What type of food do you like?

Domino’s is a good place for pizza.

Pair 2: What type of food do you like?   | I want some pizza. 
Pair 3: I want some pizza.     | Domino’s is a good place for pizza.

Find me some restaurants.

Korean food, please.

What type of food do you like?

There is no Korean restaurant.

Pair 4: Find me some restaurants. | What type of food do you like?
Pair 5: What type of food do you like?  |   Korean food, please. 
Pair 6: Korean food, please.     | There is no Korean restaurant.

Dialogue 1 Dialogue 2

Figure 2: Illustration of the positive pair construction from dialogues.

Dialogue-NLI dataset (Welleck et al., 2018) that
consists of both semantically entailed and contra-
dicted pairs. However, due to its relatively limited
scale and diversity, we found learning from this
dataset leads to less satisfying performance, while
the high cost of collecting additional human annota-
tions precludes its scalability. On the other extreme,
unsupervised representation learning has achieved
encouraging results recently, among which Sim-
CSE (Gao et al., 2021) and TOD-BERT (Wu et al.,
2020a) set new state-of-the-art results on general
texts and dialogues, respectively.

SimCSE uses Dropout (Srivastava et al., 2014)
to construct positive pairs from any text by passing
a sentence through the encoder twice to generate
two different embeddings. Although SimCSE out-
performs common data augmentations that directly
operate on discrete text, we find it performs poorly
in the dialogue domain (see Sec. 4.3). This moti-
vates us to seek better positive pair constructions by
leveraging the intrinsic properties of dialogue data.
On the other hand, TOD-BERT takes an utterance
and the concatenation of all the previous utterances
in the dialogue as a positive pair. Despite promising
performance on same tasks, we found TOD-BERT
struggles on many other dialogue tasks where the
semantic granularities or data statistics are different
from those evaluated in their paper.

In this paper, inspired by the fact that dialogues
consist of consecutive utterances that are often se-
mantically related, we use consecutive utterances
within the same dialogue as positive pairs for con-
trastive learning (See Figure 2). This simple strat-
egy works surprisingly well. We evaluate DSE
on a wide range of task-oriented dialogue applica-
tions, including intent classification, out-of-scope
detection, response selection, and dialogue action
prediction. We demonstrate that DSE substan-
tially outperforms TOD-BERT, SimCSE, and some
other sentence representation learning models in

most scenarios. We assess the effectiveness of
our approach by comparing DSE against its vari-
ants trained on other types of positive pairs (e.g.,
Dropout and Dialogue-NLI). We also discuss the
trade-off in learning dialogue representation for
tasks focusing on different semantic granularities
and provide insights on the benefits and limitations
of the proposed method. Additionally, we empiri-
cally demonstrate that using consecutive utterances
as positive pairs can effectively improve the train-
ing stability (Appendix A.3).

2 Why Contrastive Learning on
Consecutive Utterances?

When performing contrastive learning on consecu-
tive utterances, we encourage the model to treat an
utterance as similar to its adjacent utterances and
dissimilar to utterances that are not consecutive to
it or that belong to other dialogues.

On the one hand, this training process directly
increases an utterance’s similarity with its true re-
sponse and decreases its similarities with other ran-
domly sampled utterances. The ability to identify
the appropriate response from many similar utter-
ances is beneficial for dialogue ranking tasks (e.g.,
response selection). On the other hand, consec-
utive utterances also contain implicit categorical
information, which benefits dialogue classification
tasks (e.g., intent classification and out-of-scope
detection). Consider pairs 1 and 4 in Figure 2: we
implicitly learn similar representations of I am look-
ing for restaurants and Find me some restaurants,
since they are both consecutive with What type of
food do you like?.

In contrast, SimCSE does not enjoy these bene-
fits by simply using Dropout as data augmentation.
Although TOD-BERT also leverages the intrinsic
dialogue semantics by combining an utterance with
its dialogue context as positive pair, the context
is often the concatenation of 5 to 15 utterances.
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Due to the large discrepancy in both semantics
and data statistics between each utterance and its
context, simply optimizing the similarity between
them leads to less satisfying representations on
many dialogue tasks. As shown in Section 4, TOD-
BERT can even lead to degenerated representations
on some downstream tasks when compared to the
original BERT model.

3 Model

3.1 Notation

Let {(xi, xi+)}Mi=1 be a batch of positive pairs,
where M is the batch size. In our setting, each
(xi, xi+) denotes a pair of consecutive utterances
sampled from a dialogue. Let ei denote the rep-
resentation of the text instance xi that is obtained
through an encoder. In this paper, we use mean
pooling to obtain representations.

3.2 Training Target

Contrastive learning aims to maximize the simi-
larity between positive samples and minimize the
similarity between negative samples. For a con-
trastive anchor xi, the contrastive loss aims to in-
crease its similarity with its positive sample xi+
and decrease its similarity with the other 2M − 2
negative samples within the same batch.

We adopt the Hard-Negative sampling strategy
proposed by Zhang et al. (2021a), which puts
higher weights on the samples that are close to the
anchor in the representation space. The underlying
hypothesis is that hard negatives are more likely
to occur among those that are located close to the
anchor in the representation space. Specifically,
the Hard-Negative sampling based contrastive loss
regarding anchor xi is defined as follows:

ℓi,i
+
= − log

exp(sim(ei, ei+)/τ)∑
j ̸=i exp(αij · sim(ei, ej)/τ)

.

(1)

As mentioned above, here i and i+ represent the
indices of the anchor and its positive sample. We
use τ to denote the temperature hyperparameter
and sim(ei, ej) represent the cosine similarity of ei
and ej . In the above loss, αij is defined as follows,

αij =
exp(sim(ei, ej)/τ)

1
2M−2

∑
k ̸=i+ exp(sim(ei, ek)/τ)

. (2)

Noted here, the denominator is averaged over all
the other 2M -2 negatives of xi. Intuitively, sam-
ples that are close to the anchor in the represen-
tation space are assigned with higher weights. In
other words, αij denotes the relative importance
of instance xj for optimizing the contrastive loss
of the anchor xi among all 2M -2 negatives. For
every positive pair (xi, xi+), we respectively take
xi and xi+ as the contrastive anchor to calculate
the contrastive loss. Thereby, the contrastive loss
over the batch is calculated as:

L =
1

2M

M∑

i=1

(ℓi,i
+
+ ℓi

+,i) (3)

Here ℓi
+,i is defined by exchanging the roles of

instances i and i+ in Equation (1), respectively.

4 Experiments

We run experiments with five different back-
bones: BERTbase, BERTlarge (Devlin et al.,
2018), RoBERTabase, RoBERTalarge (Liu et al.,
2019b), DistilBERTbase (Sanh et al., 2019). Due
to the space limit, we only present the results on
BERTbase in the main text. The results of other
models are summarized in Appendix D. We use
the same training data as TOD-BERT for a fair
comparison. We summarize the implementation
details and data statistics of both pre-training and
evaluation in Appendices A and B, respectively.

4.1 Baselines

We compare DSE against several representation
learning models that attain state-of-the-art results
on both general text and dialogue languages. We
categorize them into the following two categories.

Supervised Learning SimCSE-sup (Gao et al.,
2021) is the supervised version of SimCSE, which
uses entailment and contradiction pairs in the NLI
datasets (Bowman et al., 2015; Williams et al.,
2018) to construct positive pair and hard negative
pair accordingly. In a similar vein, PairSupCon
(Zhang et al., 2021a) leverages the entailment pairs
as positive pairs only while proposing an unsuper-
vised hard negative sampling strategy that we sum-
marized in Section 3.2. Following this line, we also
evaluate DSE against its variant DSE-dianli
trained on the Dialogue Natural Language Infer-
ence dataset (Welleck et al., 2018) by taking all the
entail pairs as positive pairs.
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Task Dataset Evaluation Setting Num.

Intent Classification Clinc150, Snips, Hwu64, 1-shot & 5-shot fine-tune 10
Bank77, Appen-A, Appen-H 1-shot & 5-shot similarity 10

Out-of-scope Detection Clinc150 1-shot & 5-shot similarity 10

Utterance-level Response Selection AmazonQA
0-shot similarity 1
500-shot & 1000-shot fine-tune 5

Dialogue-level Response Selection DSTC7-Ubuntu 0-shot similarity 1

Dialogue Action Prediction DSTC2, GSIM 10-shot & 20-shot fine-tune 5

Table 1: Summarization of all the experimental settings. Please see Appendix B.2 for details of each dataset. The last column
(Num) indicates the number of independent experiments with different random seeds (we report the averaged results). Since
there is no randomness in 0-shot evaluations, we only run them once.

Unsupervised Learning TOD-BERT (Wu et al.,
2020a) optimizes a contrastive response selection
objective by treating an utterance and its dialogue
context as positive pair. DialoGPT (Zhang et al.,
2019) is a dialogue generation model that learns
from consecutive utterance by optimizing a lan-
guage modeling target.3 SimCSE-unsup (Gao
et al., 2021) uses Dropout (Srivastava et al., 2014)
to construct positive pairs. In the general text do-
main, SimCSE-unsup has attained impressive
performance over several explicit data augmen-
tation strategies that directly operate on the dis-
crete texts. To test its effectiveness in the dia-
logue domain, we compare DSE against its variant
DSE-dropoutwhere augmentations of every sin-
gle utterance are obtained through Dropout.

The evaluations on DSE-dropout and
DSE-dianli allow us to fairly compare our
approach against the state-of-the-art approaches in
both the supervised learning and the unsupervised
learning regimes.

4.2 Evaluation Setting

To accommodate the fact that obtaining a large
number of annotations is often time-consuming and
expensive for solving the task-oriented dialogue
applications, especially considering the variety of
domains and certain privacy concerns, we mainly
focus on few-shot or zero-shot based evaluations.

4.2.1 Evaluation Methods
Considering that only a few annotations are avail-
able in our setting, we mainly focus on the
similarity-based evaluations, where predictions

3We use mean pooling of its hidden states as sentence
representation, which leads to better performance than using
only the last token. We use its Medium version that has twice
as many parameters as BERTbase, since we found its Small
version performs dramatically worse under our settings.

are made based on different similarity metrics ap-
plied in the embedding space without requiring
updating the model.

We use different random seeds to independently
construct multiple (See Table 1) few-shot train and
validation sets from the original training data and
use the original test data for performance evalu-
ation. To examine whether the performance gap
reported in the similarity-based evaluations is con-
sistent with the associated fine-tuning approaches,
we also report the fine-tuning results. We perform
early stopping according to the validation set and
report the testing performance averaged over dif-
ferent data splits.

4.2.2 Tasks and Metrics
We evaluate all models considered in this paper on
two types of tasks: utterance-level and dialogue-
level. The utterance-level tasks take a single dia-
logue utterance as input, while the dialogue-level
tasks take the dialogue history as input. These
two types of tasks assess representation quality
on dialogue understanding at different semantic
granularities, which are shared across a variety of
downstream tasks.

Intent Classification is an utterance-level task
that aims to classify user utterances into one of the
pre-defined intent categories. We use Prototypi-
cal Networks (Snell et al., 2017) to perform the
similarity-based evaluation. Specifically, we calcu-
late a prototype embedding for each category by
averaging the embedding of all the training samples
that belong to this category. A sample is classified
into the category whose prototype embedding is the
most similar to its own. We report the classification
accuracy for this task.

Out-of-scope Detection advances intent classi-
fication by detecting whether the sample is out-of-
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BERTbase Clinc150 Bank77 Snips Hwu64 Appen-A Appen-H Ave.

1
-
s
h
o
t

SimCSE-sup♣ 52.30 38.05 65.98 40.79 35.35 44.81 46.21
PairSupCon♣ 55.34 41.30 65.20 41.43 37.55 47.55 48.06
DSE-dianli♣ (ours) 45.91 38.33 58.23 34.95 33.87 42.26 42.26

BERT♢ 36.98 22.05 62.51 27.74 13.19 18.74 30.20
SimCSE-unsup♢ 46.44 37.51 59.58 34.34 27.10 36.00 40.16
DialoGPT♢ 42.23 28.08 63.10 30.45 18.90 24.48 34.54
TOD-BERT♢ 36.67 27.11 62.52 29.52 20.61 26.68 33.85
DSE-dropout♢ (ours) 46.48 30.02 65.03 33.25 16.94 21.77 35.58
DSE♢ (ours) 62.53 43.12 79.57 44.31 37.97 48.71 52.70

5
-
s
h
o
t

SimCSE-sup♣ 71.11 56.38 79.98 56.52 49.71 59.42 62.18
PairSupCon♣ 73.88 60.07 76.14 55.75 52.71 62.23 63.46
DSE-dianli♣ (ours) 60.65 49.78 73.80 46.65 46.52 54.39 55.30

BERT♢ 59.48 38.73 78.65 43.15 21.39 27.61 44.83
SimCSE-unsup♢ 65.37 55.03 77.01 48.79 43.35 51.55 56.85
DialoGPT♢ 64.53 46.56 82.15 45.67 33.67 39.61 52.03
TOD-BERT♢ 57.74 42.98 79.68 42.32 33.58 42.52 49.80
DSE-dropout♢ (ours) 70.46 49.95 80.10 52.16 30.00 37.48 53.36
DSE♢ (ours) 78.73 61.65 88.62 60.87 52.32 62.68 67.48

Table 2: Results on similarity-based 1-shot and 5-shot Intent Classification. Predictions are made purely based on the embeddings
provided by each model without any parameter tuning. All the models use BERTbase as the backbone model. ♣: Supervised
models. ♢: Unsupervised models.

scope, i.e., does not belong to any pre-defined cate-
gories. We adapt the aforementioned Prototypical
Networks to solve it. For a test sample, if its simi-
larity with its most similar category is lower than a
threshold, we classify it as out-of-scope. Otherwise,
we assign it to its most similar category. For each
model, we calculate the mean and std (standard
deviation) of the similarity scores between every
sample and its most similar prototype embedding,
and take mean−std and mean as the threshold,
respectively. The evaluation set contains both in-
scope and out-of-scope examples. We evaluate
this task with four metrics: 1) Accuracy: accuracy
of both in-scope and out-of-scope detection. 2)
In-Accuracy: accuracy reported on 150 in-scope
intents. 3) OOS-Accuracy: out-of-scope detection
accuracy. 4) OOS-Recall: recall of OOS detection.

Utterance-level Response Selection is an
utterance-level task that aims to find the most
appropriate response from a pool of candidates
for the input user query, where both the query
and response are single dialogue utterances. We
formulate it as a ranking problem and evaluate
it with Top-k-100 accuracy (a.k.a., k-to-100
accuracy), a standard metric for this ranking
problem (Wu et al., 2020a). For every query,
we combine its ground-truth response with 99
randomly sampled responses and rank these 100
responses based on their similarities with the

query in the embedding space. The Top-k-100
accuracy represents the ratio of the ground-truth
response being ranked at top-k, where k is an
integer between 1 and 100. We report the Top-1,
Top-3, and Top-10 accuracy of the models.

Dialogue-Level Response Selection is a
dialogue-level task. The only difference with the
Utterance-level Response Selection is that query in
this task is dialogue history (e.g., concatenation
of multiple dialogue utterances from different
speakers). We also report the Top-1, Top-3, and
Top-10 accuracy for this task.

Dialogue Action Prediction is a dialogue-level
task that aims to predict the appropriate system
action given the most recent dialogue history. We
formulate it as a multi-label text classification prob-
lem and evaluate it with model fine-tuning. We
report the Macro and Micro F1 scores for this task.

4.3 Main Results

Intent Classification & Out-of-scope Detection
Tables 2 and 3 show the results of similarity-based
intent classification and out-of-scope detection.
The fine-tuning based results are presented in Ap-
pendix C. As we can see, DSE substantially out-
performs all the baselines. In intent classification,
it attains 13% average accuracy improvement over
the strongest unsupervised baseline. More impor-
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BERTbase Accuracy In-Accuracy OOS-Accuracy OOS-Recall Ave.

m
-
d

SimCSE-sup♣ 44.63 51.50 78.63 13.70 47.12
PairSupCon♣ 51.87 54.34 82.33 40.75 57.32
DSE-dianli♣ (ours) 44.73 44.88 80.83 44.07 53.63

BERT♢ 33.96 36.01 80.58 24.77 43.83
SimCSE-unsup♢ 40.45 45.50 77.83 17.73 45.38
DialoGPT♢ 36.98 40.70 80.73 20.21 44.66
TOD-BERT♢ 34.77 36.28 79.74 27.98 44.69
DSE-dropout♢ 42.41 45.19 81.26 29.92 49.70
DSE♢ (ours) 58.74 60.52 84.07 50.72 63.51

m
e
a
n

SimCSE-sup♣ 36.90 29.07 47.04 72.12 46.28
PairSupCon♣ 47.29 37.44 58.72 91.63 58.77
DSE-dianli♣ (ours) 40.70 30.78 57.67 85.30 53.61

BERT♢ 35.64 24.78 53.09 84.47 49.50
SimCSE-unsup♢ 37.65 28.99 49.38 76.62 48.16
DialoGPT♢ 38.04 27.00 52.87 87.75 51.42
TOD-BERT♢ 36.31 25.76 53.40 83.75 49.81
DSE-dropout♢ (ours) 41.19 30.93 54.76 87.39 53.57
DSE♢ (ours) 50.88 41.72 60.64 92.11 61.34

Table 3: Results on similarity-based 1-shot out-of-scope detection on Clinc150 dataset. The out-of-scope threshold is
respectively set as mean (m) and mean-std (m-d) of each sample’s similarity with its closest category. See Sec. 4.2.2 for details.
♣: Supervised models. ♢: Unsupervised models.

BERTbase
AmazonQA DSTC7-Ubuntu

Top-1 Acc. Top-3 Acc. Top-10 Acc. Top-1 Acc. Top-3 Acc. Top-10 Acc.

SimCSE-sup♣ 47.03 62.40 76.80 11.37 19.40 33.53
PairSupCon♣ 52.22 65.09 76.85 15.00 23.02 35.73
DSE-dianli♣ (ours) 49.16 63.36 76.66 14.92 22.73 34.72

BERT♢ 29.70 43.86 60.36 6.75 12.97 24.20
SimCSE-unsup♢ 48.02 62.45 76.00 10.03 17.13 29.37
DialoGPT♢ 35.96 49.52 64.44 10.20 17.60 29.82
TOD-BERT♢ 27.25 40.26 56.63 5.52 10.55 22.30
DSE-dropout♢ (ours) 37.80 51.64 66.58 9.55 16.97 28.80
DSE♢ (ours) 56.62 70.54 81.90 14.78 23.10 35.73

Table 4: Results on 0-shot response selection on AmazonQA (utterance-level) and DSTC7-Ubuntu (dialogue-level).

tantly, DSE achieves a 5%–10% average accuracy
improvement over the supervised baselines that are
trained on a large amount of expensively annotated
data. The same trend was observed in out-of-scope
detection, where DSE achieves 13%-20% average
performance improvement over the strongest unsu-
pervised baseline. The comparison between DSE,
DSE-dropout, and DSE-dianli further demonstrates
the effectiveness of using consecutive utterances as
positive pairs in learning dialogue embeddings.

The left panel of Figure 1 visualizes the embed-
dings on the Clinc150 dataset given by TOD-
BERT, SimCSE, and DSE, which provides more
intuitive insights into the performance gap. As
shown in the figure, with the DSE embeddings, in-
scope samples belonging to the same category are

closely clustered together. Clusters of different cat-
egories are clearly separated with a large margin,
while the out-of-scope samples are far away from
those in-scope clusters.

Response Selection Table 4 shows the the re-
sults of similarity-based 0-shot response selection
on utterance-level (AmazonQA) and dialogue-level
(DSTC7-Ubuntu). Results of finetune-based eval-
uation on AmazonQA show similar trend and we
summarize in Table 9 in Appendix. In Table 4,
the large improvement attained by DSE over the
baselines indicate our model’s capability in dia-
logue response selection, in presence of both single-
utterance query or using long dialogue history as
query. The right panel of Figure 1 further illustrates
this. It visualizes the embeddings of questions and
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BERTbase
DSTC2 GSIM

10-shot 20-shot 10-shot 20-shot Ave.

SimCSE-sup♣ 84.12 || 36.62 86.15 || 36.99 77.22 || 35.03 84.75 || 38.67 59.94
PairSupCon♣ 84.42 || 36.52 86.22 || 36.87 74.35 || 33.44 82.26 || 37.62 58.96
DSE-dianli♣ (ours) 83.99 || 36.20 86.74 || 37.02 69.52 || 31.36 79.97 || 36.62 57.68

BERT♢ 81.74 || 34.78 86.98 || 37.28 70.67 || 31.24 77.60 || 35.74 57.00
SimCSE-unsup♢ 84.41 || 36.62 87.84 || 37.98 75.78 || 34.47 81.73 || 37.64 59.56
TOD-BERT♢ 87.12 || 36.83 88.59 || 37.90 85.63 || 38.53 92.15 || 42.04 63.60
DSE-dropout♢ (ours) 83.23 || 36.18 86.65 || 36.95 72.25 || 32.70 81.91 || 37.33 58.62
DSE♢ (ours) 84.58 || 36.02 88.01 || 38.01 79.26 || 35.89 86.73 || 39.51 61.03
DSE2-1 (ours) 84.47 || 36.09 88.86 || 38.41 83.81 || 37.78 88.03 || 40.29 62.22
DSE3-1 (ours) 88.78 || 38.52 89.59 || 38.58 85.27 || 39.10 88.65 || 40.87 63.67
DSE123-1 (ours) 89.48 || 38.60 90.97 || 39.79 87.90 || 40.05 92.48 || 42.22 65.19

Table 5: Results on 10-shot and 20-shot dialogue action prediction fine-tuning on DSTC2 amd GSIM. We use "||" to separate
the Micro F1 score and Macro F1 score. ♣: Supervised models. ♢: Unsupervised models.

answers in the AmazonQA dataset calculated by
DSE, SimCSE, and TOD-BERT. With the DSE em-
bedding, each question is placed close to its real
answer while far away from other candidates.

Dialogue Action Prediction Table 5 shows
that DSE outperforms all baselines except
TOD-BERT, which indicates its capability in
capturing dialogue-level semantics. To better
understand TOD-BERT’s superiority over DSE
on this task, we further investigate this task
and find its data format is special. Concretely,
here each input consists of multiple utterances
explicitly concatenated by using two special
tokens [SYS] and [USR] to indicate the sys-
tem and user inputs, respectively. For example,
([SYS] hi [USR] how are you? [SYS] I’m good).
It follows the same format as the queries4 used
for training TOD-BERT, while DSE uses a single
utterance as the query.

BERTbase IC OOS u-RS d-RS DA

TOD-BERT 41.83 47.25 41.38 12.79 63.60
DSE 60.09 62.43 69.69 24.54 61.03
DSE2-1 56.56 61.55 59.88 19.36 62.22
DSE3-1 57.26 61.19 61.94 22.04 63.67
DSE123-1 59.60 61.59 63.67 22.63 65.19

Table 6: Performance of TOD-BERT, DSE, and its variants
on intent classification (IC), out-of-scope detection(OOS),
response selection on utterance-level (u-RS) and dialogue-
level (d-RS), dialogue action prediction (DA).

4.4 Trade-off in Query Construction
To understand the impact of using multiple utter-
ances as queries, we train three new variants of

4We use query to refer the first utterance in a positive pair
and use response to refer the other one

DSE. Specifically, we construct positive pairs as:
(u1 [SEP] u2, u3), (u2 [SEP] u3, u4), where ui
represents the i-th utterance in a dialogue. We use
the [SEP] token to concatenate two consecutive
utterances as query. We refer DSE trained with
this data as DSE2-1 since it uses 2 utterances as the
query and 1 utterance as the response. Similarly,
we train another variant DSE3-1. Lastly, we also
combine the positive pairs constructed for training
DSE, DSE2-1, and DSE3-1 together to train another
variant named DSE123-1.

As shown in Table 5, by simply increasing the
number of utterances within each query to three,
DSE again outperforms TOD-BERT, and the im-
provement further expands when trained with the
combined set, i.e., DSE123-1. Our results demon-
strate that using long queries that consist of 5 to 15
utterances as what TOD-BERT does is not neces-
sary even for dialogue action prediction. We further
demonstrate this by evaluating DSE and its vari-
ants on all the other four tasks in Table 6, where
our model outperforms TOD-BERT by a large mar-
gin. As it indicates, by using a single utterance
as a query, DSE achieves a good balance among
different dialogue tasks. In cases where dialogue
action prediction is of great importance, augment-
ing the original training set of DSE with positive
pairs constructed by using query consisting of 2 to
3 utterances is good enough to attain better perfor-
mance while only incurring a slight performance
drop on other tasks.

4.5 Potential Limitation

Considering the effectiveness of using consecutive
utterances as positive pairs, a natural yet important
question is: what are the potential limitations of
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our proposed approach? When using consecutive
utterances as positive pairs for contrastive learning,
an assumption is that responses to the same query
are semantically similar. Vice versa, queries that
prompt the same answer are similar. This assump-
tion holds in many scenarios, yet it fails sometimes.

It may fail when answers have different seman-
tic meanings. Take the pairs 2 and 5 in Figure
2 as an example. Through our data construction,
we implicitly consider I want some pizza and Ko-
rean food, please to be semantically similar since
they are both positively paired with What type of
food do you like. Although this may be correct
in some coarse-grained classification tasks since
these two sentences generally represent the same in-
tent (e.g., order food), using them as positive pairs
can introduce some noise when considering more
fine-grained semantics. This problem is further
elaborated when answers are general and ubiqui-
tous, e.g., Thank you. Since these utterances can
be used to respond to countless types of dissim-
ilar queries, e.g., I have booked a ticket for you
v.s. Happy birthday, we may implicitly increase
the similarities among highly dissimilar utterances
when training on these samples, which is undesir-
able.

We verify this on the NLI datasets, where the
the task is to identify whether one sentence seman-
tically entails or contradicts the anchor sentence.
For each anchor sentence, we calculate its cosine
similarities with both the true entailment, contra-
diction sentences in the representation space. We
classify the sentence with higher cosine similarity
with the anchor as entailment and the other as the
contradiction. Despite DSE achieves better classi-
fication accuracy (76.62) than BERT (69.40) and
TOD-BERT (70.51), it underperforms SimCSE-
unsup (80.31). Although using dropout to construct
positive pairs is not as effective as ours in many
dialogue scenarios, this method better avoids intro-
ducing fine-grained semantic noise.

Despite the limitations, using consecutive utter-
ances as positive pairs still leads to better dialogue
representation than the elaborately labeled NLI
datasets, indicating the great value of the infor-
mation contained in dialogue utterances.

5 Related Work

Positive Pair Construction Popular supervised
sentence representation learning often takes ad-
vantage of the human-annotated natural language

inference (NLI) datasets (Bowman et al., 2015;
Williams et al., 2018) for contrastive learning (Gao
et al., 2021; Zhang et al., 2021a; Reimers and
Gurevych, 2019; Cer et al., 2018). These sentence
pairs either entail or contradict each other, mak-
ing them the great choice for constructing posi-
tive and negative training pairs. Unsupervised sen-
tence representation learning often relies on variant
data augmentation strategies. Logeswaran and Lee
(2018) and Giorgi et al. (2020) propose using sen-
tences and their surrounding context as positive
pairs. Other works resort to popular NLP augmen-
tation methods such as word permutation (Wu et al.,
2020b) and back-translation (Fang et al., 2020). Re-
cently, Gao et al. (2021) demonstrates the superior-
ity of using Dropout over other data augmentations
that directly operate on the discrete texts.

Contrastive Learning Methods Contrastive
learning is key to recent advances in learning sen-
tence embeddings. Many contrastive learning ap-
proaches utilize memory-based methods, which
draw negative samples from a memory bank of
embeddings (Hjelm et al., 2018; Bachman et al.,
2019; He et al., 2020). On the other hand, Chen
et al. (2020) introduces a memory-free contrastive
framework, SimCLR, that takes advantage of nega-
tive sampling within large mini-batches. Promising
results were also reported in the NLP domain. To
name a few, Gao et al. (2021) leverages both within
batch negatives and the ‘contradiction’ annotations
in NLI; and Zhang et al. (2021a) propose an unsu-
pervised hard-negative sampling strategy.

Dialogue Language Model Learning dialogue-
specific language models has attracted a lot of at-
tention. Along this line, Zhang et al. (2019) adapts
the pre-trained GPT-2 model (Radford et al., 2019)
on Reddit data to perform open-domain dialogue
response generation. Bao et al. (2019) evaluates
multiple dialogue generation tasks after training on
Twitter and Reddit data (Wolf et al., 2019; Peng
et al., 2020). For dialogue understanding, Hen-
derson et al. (2019b) propose a response selection
approach using a dual-encoder model. They pre-
train the response selection model on Reddit and
then fine-tune it for different response selection
tasks. Following this, Henderson et al. (2019a) in-
troduces a more efficient conversational model that
is pre-trained with a response selection target on
the Reddit corpus. However, they did not release
code or pre-trained models for comparison. Wu
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et al. (2020a) combines nine dialogue datasets to
obtain a large and high-quality task-oriented di-
alogue corpus. They introduce the TOD-BERT
model by further pre-training BERT on this corpus
with both the masked language modeling loss and
the contrastive response selection loss.

6 Conclusion

In this paper, we introduce a simple contrastive
learning method DSE that learns dialogue repre-
sentations by leveraging consecutive utterances in
dialogues as positive pairs. We conduct extensive
experiments on five dialogue tasks to show that the
proposed method greatly outperforms other state-
of-the-art dialogue representation models and uni-
versal sentence representation methods. We pro-
vide ablation study and analysis on our proposed
data construction from different perspectives, inves-
tigate the trade-off between different data construc-
tion variants, and discuss the potential limitation
to motivate further exploration in representation
learning on unlabeled dialogues. We believe DSE
can serve as a drop-in replacement of the dialogue
representation model (e.g., the text encoder) for a
wide range of dialogue systems.

References
Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie

Zumer, Justin Harris, Emery Fine, Rahul Mehrotra,
and Kaheer Suleman. 2017. Frames: a corpus for
adding memory to goal-oriented dialogue systems.
arXiv preprint arXiv:1704.00057.

Philip Bachman, R Devon Hjelm, and William Buch-
walter. 2019. Learning representations by maximiz-
ing mutual information across views. arXiv preprint
arXiv:1906.00910.

Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng
Wang. 2019. Plato: Pre-trained dialogue generation
model with discrete latent variable. arXiv preprint
arXiv:1910.07931.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz–a
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A Pre-train

In this section, we present the training data, imple-
mentation details, and training stability of model
pre-training.

A.1 Data

We utilize the corpus collected by TOD-BERT
(Wu et al., 2020a) to construct positive pairs. This
dataset is the combination of 9 publicly available
task-oriented datasets: MetaLWOZ (Lee et al.,
2019), Schema (Rastogi et al., 2020), Taskmas-
ter (Byrne et al., 2019), MWOZ (Budzianowski
et al., 2018), MSR-E2E (Li et al., 2018), SMD
(Eric and Manning, 2017), Frames (Asri et al.,
2017), WOZ (Mrkšić et al., 2016), CamRest676
(Wen et al., 2017). The combined dataset contains
100707 dialogues with 1388152 utterances over 60
domains. We filter out sentences with less or equal
to 3 words and end up with 892835 consecutive
utterances (for DSE) and 879185 unique sentences
(for DSE-dropout). Note that, the training data
of SimCSE-unsup consists of 1 million sentences
from Wikipedia. That says, on the one hand, we
use the same dataset as TOD-BERT but with our
proposed data construction. On the other hand,
we use a similar number of training samples as
SimCSE-unsup. We believe such data construction
makes the comparisons fair enough.

A.2 Hyperparameters

We add a contrastive head after the Transformer
model and use the outputs of the contrastive head
to perform contrastive learning. We use a two-
layer MLP with size (d × d, d × 128) as the con-
trastive head. We use Adam (Kingma and Ba,
2014) with a batch size of 1024 and a constant
learning rate as the optimizer. We set the learn-
ing rate for contrastive head as 3e − 4 and the
learning rate for the Transformer model as 3e− 6.
The temperature hyperparameter τ is set as 0.05.
We train the model for 15 epochs (see Appendix
A.3 for more details) and save the model at the
end for evaluation. We use the same hyperpa-
rameters across all the experiments for BERTbase,
RoBERTabase, and DistilBERTbase models. For
BERTlarge and RoBERTalarge, we change the
batch size to 512 to fit it into the GPUs. Pre-
training of the DistilBERTbase, BERTbase, and
BERTlarge model respectively takes 3, 4, and 13
hours on 8 NVIDIA® V100 GPUs5.

5Our codes and model are under the Apache-2.0 License
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Figure 3: DSE and DSE-dropout’s performance on
each task at every epoch. The dashed lines represent the
results of DSE-dropout.

A.3 Training Stability
In this section, we analyze the model’s stability in
terms of training steps when training with different
type of positive pairs. We compare two data con-
struction methods: consecutive utterances (DSE)
and dropout (DSE-dropout). We first train each
model for 15 epochs, save the checkpoint at the
end of each epoch and evaluate each checkpoint
with similarity-based methods. Figure 3 shows the
two model’s average performances on intent clas-
sification, out-of-scope detection, utterance-level
response selection and dialogue-level response se-
lection.

This result further illustrates the effectiveness of
using consecutive utterances as positive pairs for
learning dialogue representation. As shown in the
figure, DSE’s performance on all the tasks consis-
tently improves during the training process, while
DSE-dropout achieves the best performance at the
first epoch and significantly loses performance af-
terwards. Besides, DSE’s performance is less sen-
sitive to the training steps. It achieves stable per-
formance after about 5 epochs. In contrast, DSE-
dropout’s performance drops dramatically during
the training process, yet it never surpasses DSE’s
performance. Therefore, we report DSE-dropout’s
performance at the first epoch in all the tables.

B Evaluation Setup

In this section, we present evaluation details and
introduction to the evaluation dataset. Throughout
this paper, we use cosine similarity as the similarity
metric and mean pooling of token embeddings as
the sentence representation. For baseline models,

we report the better results of using its default set-
ting (e.g., last hidden state of the [CLS] token as
sentence embedding for SimCSE) and mean pool-
ing.

B.1 Hyperparameters

We use the same hyperparameters for all the mod-
els. For similarity-based methods, the only hyper-
parameter is the max sequence length, we empir-
ically choose a number that can fit at least 99%
of the samples. We respectively set it as 64, 64,
128, and 128 for intent classification, out-of-scope
detection, utterance-level response selection and
dialogue-level response selection. Hyperparame-
ters for fine-tune evaluations as listed as follows:

Intent Classification We fine-tune all the models
for 50 epochs with a batch size of 16 and learn-
ing rate of 3e-05. We evaluate the model on the
few-shot validation set after every 10 steps. Early
stopping is applied based on the model’s validation
results. The max sequence length is set as 64 and
the dropout at the classification layer is set as 0.1.

Utterance-level Response Selection In this task,
we set the max sequence length as 128 and batch
size as 100. Other hyperparameters are same as
those in Intent Classification. We use the original
SimCLR loss (Chen et al., 2020) to optimize the
model.

Dialogue Action Prediction In this task, we fine-
tune all the models for 100 epochs with a batch
size of 32 and learning rate of 5e-05. We evaluate
the model on the few-shot validation set after every
30 steps. Early stopping is also applied. The max
sequence length is set as 32 since we find shorter
inputs leads to much better performance for all the
models. We truncate sentences from the head to
keep the most recent dialogue utterances as model
input. We set the dropout at the classification layer
as 0.2.

B.2 Datasets

Intent Classification We use 4 popular pub-
licly available datasets: Clinc150 (Larson et al.,
2019) with 150 categories and 4500 test sample,
Bank77 (Casanueva et al., 2020) with 77 cate-
gories and 3080 test sample, Snips (Coucke et al.,
2018) with 7 categories and 1447 test sample, and
Hwu64 (Liu et al., 2019a) with 64 categories and
3853 test sample. To apply the Clinc150 dataset
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in intent classification, we remove all the out-of-
scope samples. We also use an internal dataset
named Appen, whose texts are transcribed from
customer recording. This dataset contains 30 cate-
gories and 310 test samples. There are two versions
of each sentence. One is transcribed by Automatic
Speech Recognition (ASR), which includes some
ASR noise (e.g., transcribe errors). The other is
transcribed by human annotator. We refer them
respectively as Appen-A and Appen-H.

Out-of-scope Detection We use the entire
Clinc150 dataset, which contains 150 in-scope
intents and one out-of-scope intent. There are 5500
test samples in total (4500 in-scope and 1000 out-
of-scope).

Utterance-level Response Selection We use the
AmazonQA dataset (Wan and McAuley, 2016),
which contains 5334606 question-answer pairs
about different products. Following Henderson
et al. (2019a), we randomly select 300K pairs for
model evaluation.

Dialogue-Level Response Selection We use the
DSTC7-Ubuntu dataset (Lowe et al., 2017),
which contains conversations about the Ubuntu sys-
tem. Each query of this dataset comes together
with one ground-truth response and 100 candidate
responses. We combine the validation and test sets
together for evaluation, which results in 6000 eval-
uation samples.

Dialogue Action Prediction We use the DSTC2
(Henderson et al., 2014) and GSIM (Shah et al.,
2018) dataset processed by Wu et al. (2020a).
These two datasets respectively contains 13/19 ac-
tions and 1117/1039 test samples. The average
number of samples in 10-shot and 20-shot training
is 79 and 149 for DSTC2; 60 and 120 for GSIM.

C Results of BERTbase

In this section, we present other evaluation results
on the BERTbase model, including 1-shot and 5-
shot fine-tune on intent classification (Table 7), 5-
shot similarity-based out-of-scope detection (Table
8), and 500-shot and 1000-shot fine-tune on Ama-
zonQA response selection (Table 9).

D Results of Other Backbone Models

In this section, we present similarity-based eval-
uation results on other four backbone models:
BERTlarge, RoBERTabase, RoBERTalarge, and

DistilBERTbase. Table 10 shows the results of
similarity-based intent classification and Table 11
shows the results of similarity based response se-
lection on both utterance-level and dialogue-level.
As shown in the tables, DSE leads to consistent and
significant performance boost on all the backbone
models.
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BERTbase Clinc150 Bank77 Snips Hwu64 Appen-A Appen-H Ave.

1
-
s
h
o
t

SimCSE-sup♣ 48.30 35.29 49.77 34.09 30.16 38.42 39.34
PairSupCon♣ 50.33 37.59 52.53 34.21 33.58 41.65 41.65
DSE-dianli♣ (ours) 43.07 38.02 46.57 30.98 29.39 36.77 37.47

BERT♢ 37.01 24.28 52.05 26.36 17.87 19.71 29.55
SimCSE-unsup♢ 42.72 33.56 47.13 30.19 24.00 32.68 35.05
TOD-BERT♢ 39.48 26.12 46.13 26.81 13.45 23.26 29.21
DSE-dropout♢ (ours) 41.89 30.10 44.46 28.06 18.68 20.48 30.61
DSE♢ (ours) 55.67 38.10 70.67 37.93 32.68 45.03 46.68

5
-
s
h
o
t

SimCSE-sup♣ 85.49 70.16 88.90 68.86 61.71 73.29 74.74
PairSupCon♣ 85.15 71.00 86.01 68.12 63.94 73.68 74.65
DSE-dianli♣ (ours) 81.87 69.33 82.49 64.40 58.90 68.52 70.92

BERT♢ 84.00 68.51 85.72 64.79 55.00 65.52 70.59
SimCSE-unsup♢ 83.35 70.08 86.82 65.61 59.68 70.03 72.60
TOD-BERT♢ 83.15 65.29 88.49 66.29 56.32 67.13 71.11
DSE-dropout♢ (ours) 84.14 69.74 87.39 66.47 57.74 68.13 72.27
DSE♢ (ours) 86.67 71.52 92.56 70.71 63.71 75.10 76.71

Table 7: Results of fine-tuning all the models for 1-shot and 5-shot Intent Classification for BERTbase models. ♣: Supervised
models. ♢: Unsupervised models

BERTbase Accuracy In-Accuracy OOS-Accuracy OOS-Recall Ave.

m
e
a
n
−
s
t
d SimCSE-sup♣ 59.65 69.04 80.35 17.40 56.61

PairSupCon♣ 68.37 71.03 85.62 56.43 70.36
DSE-dianli♣ (ours) 56.22 56.92 83.38 53.07 62.40

BERT♢ 53.92 57.25 81.94 38.95 58.01
SimCSE-unsup♢ 55.68 63.06 79.58 22.47 55.20
DialoGPT♢ 58.53 63.25 82.62 37.25 60.41
TOD-BERT♢ 53.49 56.12 81.75 41.64 58.25
DSE-dropout♢ (ours) 64.21 67.39 83.59 49.92 66.28
DSE♢ (ours) 72.62 74.77 87.16 62.95 74.38

m
e
a
n

SimCSE-sup♣ 42.50 34.95 48.26 76.50 50.55
PairSupCon♣ 56.19 47.53 62.79 95.17 65.42
DSE-dianli♣ (ours) 46.87 37.75 59.96 87.92 58.13

BERT♢ 47.79 38.40 57.86 90.07 58.53
SimCSE-unsup♢ 45.13 36.82 52.01 82.51 54.12
DialoGPT♢ 49.64 40.26 57.49 91.81 59.80
TOD-BERT♢ 47.88 38.46 58.43 90.31 58.77
DSE-dropout♢ (ours) 54.45 46.00 61.31 92.50 63.56
DSE♢ (ours) 59.20 51.35 64.79 94.53 67.47

Table 8: Results on similarity-based 5-shot out-of-scope detection on Clinc150 dataset. The out-of-scope threshold is
respectively set as mean (m) and mean-std (m-d) of each sample’s similarity with its closest category. See Sec. 4.2.2 for details.
All the models use BERTbase as the backbone model. ♣: Supervised models. ♢: Unsupervised models.

BERTbase

AmazonQA 500-shot AmazonQA 1000-shot

Top-1 Acc. Top-3 Acc. Top-10 Acc. Top-1 Acc. Top-3 Acc. Top-10 Acc.

SimCSE-sup♣ 59.02 72.90 84.40 60.24 73.91 85.17
PairSupCon♣ 61.24 74.51 85.19 62.31 75.36 86.01

BERT♢ 55.63 70.98 83.79 58.00 72.67 84.81
SimCSE-unsup♢ 56.04 70.34 82.56 57.85 71.95 84.01
TOD-BERT♢ 43.52 59.29 75.06 46.54 62.16 77.15
DSE-dropout♢ (ours) 57.66 72.02 83.72 58.66 72.86 84.67
DSE♢ (ours) 61.71 75.66 86.49 63.02 76.47 87.55

Table 9: Results on 500-shot and 1000-shot fine-tune evaluation on response selection on AmazonQA (utterance-level). All the
models use BERTbase as the backbone model. ♣: Supervised models. ♢: Unsupervised models.
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Clinc150 Bank77 Snips Hwu64 Ave.
1
-
s
h
o
t

BERTlarge 31.71 20.47 54.31 25.24 32.93
BERTlarge-DSE 65.57 45.45 78.52 46.37 58.97

RoBERTabase 34.58 20.58 52.25 24.24 32.91
RoBERTabase-DSE 66.05 45.01 80.58 43.98 58.90

RoBERTalarge 35.72 20.84 54.80 23.57 33.73
RoBERTalarge-DSE 69.23 45.42 73.72 44.29 58.16

DistilBERTbase 39.48 23.96 63.00 30.25 39.17
DistilBERTbase-DSE 60.47 43.52 76.38 44.63 56.25

5
-
s
h
o
t

BERTlarge 46.78 33.53 70.89 37.06 47.06
BERTlarge-DSE 80.40 64.49 89.08 63.00 74.24

RoBERTabase 53.58 32.40 68.90 34.98 47.46
RoBERTabase-DSE 81.73 64.92 89.67 62.81 74.78

RoBERTalarge 55.43 33.25 78.01 36.25 50.73
RoBERTalarge-DSE 82.52 62.93 86.64 61.04 73.28

DistilBERTbase 61.00 39.45 78.90 45.00 56.08
DistilBERTbase-DSE 77.16 60.39 86.48 60.81 71.21

Table 10: Results on similarity-based 1-shot and 5-shot Intent Classification with different model as the backbone. DSE leads to
significant and consistent performance boost for all the models.

BERTlarge

AmazonQA DSTC7-Ubuntu

Top-1 Acc. Top-3 Acc. Top-10 Acc. Top-1 Acc. Top-3 Acc. Top-10 Acc.

BERTlarge 27.97 41.30 57.04 6.10 11.08 22.31
BERTlarge-DSE 59.63 73.46 84.12 16.40 24.56 36.51

RoBERTabase 19.60 29.67 44.70 4.86 9.80 20.70
RoBERTabase-DSE 55.69 70.01 81.68 15.86 24.25 37.38

RoBERTalarge 26.68 37.73 51.70 7.65 14.50 26.10
RoBERTalarge-DSE 58.13 71.65 82.20 18.66 27.70 40.93

DistilBERTbase 31.73 46.47 63.23 6.65 12.46 24.98
DistilBERTbase-DSE 56.36 70.11 81.51 14.56 22.78 35.63

Table 11: Results on 0-shot response selection on AmazonQA (utterance-level) and DSTC7-Ubuntu (dialogue-level). DSE
leads to significant and consistent performance improvements on all the models.

768


