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ABSTRACT
Recently, accumulating evidences have indicated miRNAs play critical roles in the progression and
development of various human complex diseases, which pointed out that identifying miRNA-disease
association could enable us to understand diseases at miRNA level. Thus, revealing more and more
potential miRNA-disease associations is a vital topic in biomedical domain. However, it will be extremely
expensive and time-consuming if we examine all the possible miRNA-disease pairs. Therefore, more
accurate and efficient methods are being highly requested to detect potential miRNA-disease
associations. In this study, we developed a computational model of Ensemble Learning and Link
Prediction for miRNA-Disease Association prediction (ELLPMDA) to achieve this goal. By integrating miRNA
functional similarity, disease semantic similarity, miRNA-disease association and Gaussian profile kernel
similarity for miRNAs and diseases, we constructed a similarity network and utilized ensemble learning to
combine rank results given by three classic similarity-based algorithms. To evaluate the performance of
ELLPMDA, we exploited global and local Leave-One-Out Cross Validation (LOOCV), 5-fold Cross Validation
(CV) and three kinds of case studies. As a result, the AUCs of ELLPMDA is 0.9181, 0.8181 and 0.9193
+/¡0.0002 in global LOOCV, local LOOCV and 5-fold CV, respectively, which significantly exceed almost all
the previous methods. Moreover, in three distinct kinds of case studies for Kidney Neoplasms, Lymphoma,
Prostate Neoplasms, Colon Neoplasms and Esophageal Neoplasms, 88%, 92%, 86%, 98% and 98% out of
the top 50 predicted miRNAs has been confirmed, respectively. Besides, ELLPMDA is based on global
similarity measure and applicable to new diseases without any known related miRNAs.
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Introduction

MicroRNAs (miRNAs) are a family of small non-coding RNAs
(containing about 22 nucleotides) that play a significant regulatory
roles in animals and plants by targeting mRNAs for cleavage or
translational repression [1]. Currently, a great many of studies have
indicated that miRNA is one of the most important component in
cell, which makes a vital contribution in multiple fundamental bio-
logical processes, including cell development, proliferation, signal
transduction, differentiation, apoptosis, viral infection, metabolism,
aging and so on [2–8]. Apparently, taking all the above functions
into account, seeking for comprehensive information about
miRNA might be a superior way to understand creatures at cell
level. Twenty four years after the discovery of the first twomiRNAs
(Caenorhabditis elegans lin-4 and let-7), due to various experimen-
tal methods and computational models, thousands of miRNAs
have been discovered recently [9–12]. In the latest version of miR-
Base [12] (see http://www.mirbase.org/), there are 28645 entries
and more than 1000 human miRNAs. Furthermore, up to now,
hundreds of miRNAs with different sequences and expression pat-
terns have been discovered in diverse animals [7,13,14].

In recent years, the relationship between miRNAs and
human diseases has attracted the most attention. Accumulating
evidences have indicated that miRNA mutations or mis-expres-
sion correlate with various human cancers which implies miR-
NAs can function as tumor suppressors and oncogenes [15].
For instance, the dysregulation of the miRNAs has been con-
firmed as a main reason of aberrant cell behavior by many stud-
ies [11]. Furthermore, Single-nucleotide polymorphisms
(SNPs) located at miRNA-binding sites (miRNA-binding
SNPs) are likely to affect the expression of the miRNA target
and may contribute to the susceptibility of humans to common
diseases [16]. Moreover, downregulation of miR-101 is
involved in cyclooxygenase-2 overexpression in human colon
cancer cells. Also, miR-214 has been confirmed to be related to
human ovarian cancer by inducing cell survival and cisplatin
resistance [17,18]. Another example is that biological studies
pointed out miR-34a inhibits prostate cancer stem cells and
metastasis by directly repressing CD44 [19]. Besides, researches
had pointed out that the miR-15a–miR-16-1 cluster controls
prostate cancer by targeting multiple oncogenic activities [20].
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Therefore, considering the close relationship between miR-
NAs and human diseases, identifying more potential associa-
tions between miRNAs and diseases is currently an important
goal in biomedical domain because it might contribute a lot to
the research about diseases. However, it will be extremely
expensive and time-consuming if we test all the miRNA-disease
pairs by biological experiment. Thus, in order to avoid the
waste of money and time, it is necessary to predict the most
potential miRNA-disease pairs. As more and more databases
are available, developing computational model would be an
effective way to reveal potential association between miRNAs
and diseases [21–30].

Based on the assumption that miRNAs with similar func-
tions are more likely to have connections with diseases which
share similar phenotypes, various computational methods have
been established to predict the potential associations between
miRNAs and diseases [31–34]. Jiang et al. [30] prioritized the
entire human microRNAome for diseases of interest by inte-
grating predicted miRNA-target associations, disease phenotype
similarities, and known miRNA-disease associations. However,
this computational model could not reach a satisfactory predic-
tive accuracy because it strongly relies on the predicted
miRNA-target interactions with high false-positive and false-
negative results. Moreover, Shi et al. [35] advanced a model
which mapped disease genes and miRNA targets on the pro-
tein-protein interaction (PPI) network by integrating the infor-
mation of miRNA-target interactions, disease-gene associations
and PPIs. Base on the assumption that a miRNA tends to be
related with the diseases whose genes are correlated with the
target of this miRNA, they paid attention to the aforemen-
tioned information to identify miRNA-disease associations. Xu
et al. [36] made use of a miRNA prioritization method which
exploited the similarity between the miRNAs targets and dis-
ease genes instead of exploiting the known miRNA-disease
association. They constructed the miRNA target–dysregulated
network (MTDN) and trained a support vector machine
(SVM) on their own-defined gold standard data set to reveal
novel miRNA-disease associations. Although it is a creative
challenge, this method could not achieve a satisfactory accuracy
because of the aforementioned reason that the miRNA-target
interaction is not accurate enough. Besides, by integrating
miRNA-protein association scores and protein-disease associa-
tion scores, Mork et al. [37] presented a miRPD method to
create scoring schemes that enable them to rank candidate
miRNA–disease pairs. Furthermore, they obtained high-confi-
dence and medium-confidence sets of miRNA-disease associa-
tions. However, because of the similar reason that miRNA-
target interactions were not reliable enough, the predictive per-
formance is not very satisfactory.

Considering the apparent limitation of miRNA-target inter-
actions, several networks such as miRNA functional similarity
network, disease semantic similarity network, disease pheno-
type similarity network, and miRNA-disease associations net-
work were constructed, after that, multiple methods depending
on them were developed. For example, Xuan et al. [29] pre-
sented a method names HDMP relied on weighted kmost simi-
lar neighbors to predict disease-related miRNAs. To increase
the accuracy of miRNA functional similarity calculated by the
classic methods, they introduced information content of disease

terms and disease phenotype similarity. HDMP did get a higher
predictive accuracy than most of previous methods. However, it
is based on a local similarity measure rather than a global mea-
sure which is obviously better. Furthermore, HDMP could not
be used on new diseases without any known related miRNAs.

Moreover, to overcome the limitation of local similarity
measure, Chen et al. [25] presented the model of Random
Walk with Restart for MiRNA–Disease Association
(RWRMDA) to infer potential miRNA–disease association.
Based on global network information, random walk with restart
was implemented on the miRNA functional similarity network.
Moreover, RWRMDA was capable of simultaneously ranking
all the miRNA-disease pairs. Although the predictive accuracy
had been improved a lot, this model could not be exploited for
diseases without any known associated miRNAs. In order to
solve this problem, Chen et al. [28] further introduced another
method called WBSMDA, which is based on miRNA functional
similarity, disease semantic similarity, miRNA-disease associa-
tions, and Gaussian interaction profile kernel similarity for
miRNAs and diseases. Comparing with RWRMDA, WBSMDA
could be applied to diseases without any related miRNAs,
which is a significant breakthrough in miRNA-disease associa-
tion prediction. However, the performance of WBSMDA was
not very satisfactory and they did not find a way reasonable
enough to combine the Within-Score and Between-Score.
What’s more, to take the prior information regarding the net-
work nodes and the respective local topological structures of
the different categories of nodes into account. Xuan et al. [38]
introduced another method named MIDP, which took advan-
tage of the characteristics of the nodes and the various ranges
of topologies. MIDP was also based on random walk, and it
effectively relieved the negative effect of noisy data.

Also, more and more machine learning-based computational
models were introduced in miRNA-disease association prediction.
For instance, according to the assumption that miRNAs impli-
cated in a specific tumor phenotype will show aberrant regulation
of their target genes, Xu et al. [36] established a heterogeneous
miRNA-target dysregulated network, extracted four network
topological features, and developed Support Vector Machine
(SVM)-based Supervised classifier to distinguish positive disease
related miRNAs from negative ones. Although SVM is a theoreti-
cally accurate method, collecting known negative associations is a
very difficult and even impossible task. Thus, this method did not
give a good performance. Chen et al. [24] proposed another
machine learning method which made use of semi-supervised
learning to predict potential disease-related miRNAs (RLSMDA).
Though RLSMDA is applicable for diseases without any related
miRNAs, there are also limitations in combination of two classi-
fiers in the different spaces and the selection of parameter values.

Considering that both similarity-based algorithms and
machine learning methods achieve good results in previous
researched [24,27,36], in this study, by combining the advan-
tages of both methods, we advanced a novel computational
model of Ensemble Learning and Link Prediction for miRNA-
Disease Association prediction (ELLPMDA) to predict poten-
tial miRNA-disease associations. Instead of combining the
result of a few classifiers, we output the weighted combination
of the ranks given by three classic similarity-based algorithms,
Common Neighbors, Jaccard index and Katz index. Unlike
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some methods mentioned above, ELLPMDA based on known
miRNA-disease associations, miRNA functional similarity, dis-
ease semantic similarity and Gaussian interaction profile kernel
similarity for diseases and miRNAs rather than disease-gene
associations and miRNA-target interaction which are incom-
plete and inaccurate. Besides, ELLPMDA is based on global
similar measure and is applicable to diseases without any
known related miRNAs. Leave-One-Out Cross-Validation
(LOOCV) and 5-fold Cross Validation were implemented for
ELLPMDA based on the experimentally confirmed associations
between miRNAs and diseases. Significantly better than six
classic methods (HGIMDA, RLSMDA, HDMP, WBSMDA,
RWRMDA and MCMDA) [21,22,24,25,28,29], the AUCs of
global and local LOOCV were 0.9181 and 0.8181, respectively.
Furthermore, ELLPMDA was evaluated in three distinct kinds
of case studies. In the first case study, 44, 46 and 43 out of the
top 50 predictive miRNAs for Colon Neoplasms, Esophageal
Neoplasms and Kidney Neoplasms were confirmed in
dbDEMC [39] and miR2Disease [40] databases. Secondly, to
test ELLPMDA’s predictive ability for new diseases without any
known related miRNAs, we set up a novel case study for Lung
Neoplasms. In this case, we removed all the experimentally
confirmed miRNA-disease associations which including Lung
Neoplasms from the training samples. At this time, Lung Neo-
plasms could be treated as a new disease without any known
related miRNAs. After implementing ELLPMDA, we examined
the top 50 miRNAs which were predicted to be associated with
lung neoplasms in dbDEMC [39], HMDD v2.0 [41] and miR2-
Disease [40] databases, and 49 out of top 50 miRNAs have
been confirmed. Finally, we utilized the old version of HMDD,
a database that only include 1395 associations between 271
miRNAs and 137 diseases to be the training set. In our case
study of Breast Neoplasms, 49 out of top 50 miRNAs were
affirmed in dbDEMC [39], HMDD v2.0 [41] and miR2Disease
[40] databases. Therefore, according to the cross validation and
case studies, ELLPMDA is a highly reliable method, which is
obviously superior to the aforementioned classic algorithms.

Results

Performance

Based on experimentally verified associations between miRNAs
and diseases, we implemented global LOOCV, local LOOCV
and 5-fold CV to evaluate the predictive accuracy of ELLPMDA.
After that, we compared the evaluation result with six previous
methods (HGIMDA, RLSMDA, HDMP, WBSMDA, RWRMDA
and MCMDA) [21,22,24,25,28,29]. In LOOCV evaluation, every
confirmed association was regard as a test sample in turn while
the rest associations were treated as training samples. All the
miRNA-disease pairs that had not been confirmed by experi-
mental studies were regard as candidate samples. After executing
ELLPMDA, every miRNA-disease pair will obtain a association
score. A higher score means a link is more likely to exist between
this pair. The difference between global LOOCV and local
LOOCV lies in whether we simultaneously inspected all the dis-
eases or not. In global LOOCV, we compared the score of the
test sample with all the candidate samples. In local LOOCV, con-
sidering that every test sample was a pair consisting of particular

disease and miRNA, we merely compared the test sample with
candidate samples which included this particular disease. Fur-
thermore, we drew Receiver operating characteristics (ROC)
curve by plotting the true positive rate (TPR, sensitivity) against
the false positive rate (FPR, 1-specificity) at different thresholds.
Sensitivity denotes the percentage of miRNA-disease test sam-
ples whose ranks exceeded the given threshold while specificity
represents the percentage of negative miRNA-disease associa-
tions whose ranks were lower than the threshold [42]. After plot-
ting, we could calculate the area under ROC curve (AUC). In
general, AUC = 1 means this method gives a perfect prediction
performance while AUC = 0.5 indicates the performance of this
method is same as random selection. As a result,
the performance comparison of ELLPMDA to (HGIMDA,
RLSMDA, HDMP, WBSMDA, RWRMDA and MCMDA)
[21,22,24,25,28,29] have been shown in Fig. 1. This figure
straightly indicate that for global LOOCV, the AUCs of
HGIMDA, RLSMDA, HDMP, WBSMDA and MCMDA is
respectively 0.8781, 0.8426, 0.8366, 0.8030 and 0.8759, while the
AUC of ELLPMDA is 0.9181. The AUCs of HGIMDA,
RLSMDA, HDMP, WBSMDA, RWRMDA and MCMDA in
local LOOCV is respectively 0.8077, 0.6953, 0.7702, 0.8031,
0.7891 and 0.7718, as contract, the AUC of ELLPMDA is 0.8181.

Moreover, we exploited 5-fold CV to further examine the pre-
dictive accuracy. Similar to LOOCV, in 5-fold CV, we randomly
divided all the experimentally confirmed associations between
miRNAs and diseases into 5 equal-size parts, and then we treated
one part as test samples in turn and the other 4 parts as training
samples. After executing ELLPMDA, the score of each test sample
was compared with the scores of all the candidate samples, respec-
tively. At this time, we could obtain the rank of every association
in test samples. All the associations would obtain a rank after the
above 5 parts were regard as test samples separately. In order to
avoid random error, we took advantage of 5-fold CV for 100 times.
As a result, the AUCs of MCMDA, HDMP and WBSMDA were
respective 0.8767+/¡0.0011, 0.8342+/¡0.0010 and 0.8185
+/¡0.0009, while the AUC of ELLPMDA is 0.9193+/¡0.0002.

Case study

Furthermore, we designed three kinds of case studies to com-
prehensively evaluate the predictive accuracy of ELLPMDA.
Firstly, we took experimentally confirmed miRNA-disease asso-
ciations captured from HMDD v2.0 [41] as the training set and
did case studies for three common human cancers: Colon Neo-
plasms, Esophageal Neoplasms and Kidney Neoplasms. In this
part, after implementing ELLPMDA, we obtained the scores of
all the miRNA-disease pairs. Similar to cross-validation, we set
experimentally verified associations as training samples and
other miRNA-disease pairs were considered as candidate sam-
ples. Then for every disease mentioned above, we examined the
top 10 and top 50 of predictive potential miRNA-disease pairs
in dbDEMC [39] and miR2Disease [40] databases.

Colon Neoplasms is a big threaten of people’s live with low
detection rate in early stage, moreover, studies showed that
about half of the Colon Neoplasms patients die of metastatic
disease within 5 years from diagnosis [43]. Obviously, it is
really urgent for us to achieve more information about it, which
might contribute a lot to improve the accuracy of detection
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[44,45]. After a great many of biological experiments, lots of
miRNAs had been proved to be associated with Colon Neo-
plasms. For example, miR-126 suppresses the growth of neo-
plastic cells by targeting phosphatidylinositol 3�kinase
signaling and is frequently lost in colon neoplasms [46]. Hsa-
miR-181b and hsa-miR-200c were over-expressed in colon
tumor tissues compared to normal tissues [47]. Also, hsa-miR-
145 can inhabits the growth of Colon Neoplasms cells by
targeting the insulin receptor substrate-1 [48]. Taking Colon
Neoplasms as a case study, we implemented ELLPMDA and 9
out of top 10 and 44 out of top 50 potential related miRNAs
given by ELLPMDA had been confirmed in miR2Disease and
dbDEMC (See Table 1). Taking the top 5 predicted miRNAs as
examples, miR-155(2nd) and miR-20a (5th) were confirmed to
be up-regulated in colon neoplasms [49]. MiR-21(1st) post-

transcriptionally downregulates tumor suppressor Pdcd4 and
stimulates invasion in colon neoplasms [50]. What’s more,
miR-221(3rd), a miRNA directly amplified from plasma, is a
potential diagnostic and prognostic marker of colon neoplasms
[51]. Also, studies showed that miR-125b (4th) is straightly
involved in cancer progression and is linked with poor progno-
sis in human colon neoplasms [52].

Esophageal Neoplasms is reported as the eighth most com-
mon cancer worldwide and the sixth leading cause of deaths
related with cancers based on the pathological characteristics
and it affect males more times than females [45,53]. Because of
the potential characteristics of invasion and metastasis in
esophageal carcinoma cells, the overall 5-year survival rate is
poor despite of advanced treatment [45,53,54]. Previous studies
indicated that miRNAs is important in tumorigenesis of esoph-
ageal neoplasms [53]. For instance, miR-373 post-transcrip-
tionally regulates large tumor suppressor in human esophageal
neoplasms [55]. Down-regulation of miR-27a might reverse
multidrug resistance of esophageal squamous cell carcinoma
[56]. Also, research pointed out that miR-203 inhibits the pro-
liferation and self-renewal of esophageal neoplasms stem-like
cells by suppressing stem renewal factor Bmi-1 [57]. In this
case, as a result, 9 out of top 10 and 46 out of top 50 predictive
miRNAs given by ELLPMDA had been verified in miR2Disease
and dbDEMC (See Table 2).

Kidney Neoplasm, also known as renal cancer, is a cancer
starting in the cells of kidney that includes many different types.
It accounts for 3% of adult malignancies [58,59]. Renal cell carci-
noma (RCC) and transitional cell carcinoma (TCC, also known
as urothelial cell carcinoma) are the most common types of kid-
ney neoplasms [60]. According to previous studies, various miR-
NAs had been examined to be linked with kidney neoplasms.
For example, evidence had pointed out that miR-519 suppresses
tumor growth in human kidney neoplasms by reducing HuR
levels [61]. Also, VHL-regulated miR-204 is able to suppress
tumor growth through inhibition of LC3B-mediated autophagy
in renal clear cell carcinoma [62]. Besides, Overexpression of
miR-210 causes centrosome amplification in renal carcinoma
cells [63]. In this case, 8 out of top 10 and 43 out of top 50 pre-
dicted potential miRNAs had been confirmed (See Table 3). For

Figure 1. AUC of global LOOCV compared with HGIMDA, RLSMDA, HDMP, WBSMDA and MCMDA; AUC of local LOOCV compared with HGIMDA, RLSMDA, HDMP,
WBSMDA, RMRMDA and MCMDA. As a result, ELLPMDA obtained AUCs of 0.9181 and 0.8181 in global and local LOOCV, which significantly exceed previous classic
methods.

Table 1. Prediction of the top 50 predicted miRNAs associated with Colon Neo-
plasms based on known associations in HMDD v2.0 database. The first column
records top 1–25 related miRNAs. The second column records the top 26–50
related miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-21 miR2Disease:dbDEMC: hsa-mir-141 miR2Disease:dbDEMC:
hsa-mir-155 miR2Disease:dbDEMC: hsa-mir-31 miR2Disease:dbDEMC:
hsa-mir-221 miR2Disease:dbDEMC: hsa-mir-34c miR2Disease:
hsa-mir-125b dbDEMC: hsa-let-7e dbDEMC:
hsa-mir-20a miR2Disease:dbDEMC: hsa-mir-101 unconfirmed
hsa-mir-34a miR2Disease:dbDEMC: hsa-mir-142 unconfirmed
hsa-mir-16 dbDEMC: hsa-mir-15a dbDEMC:
hsa-mir-222 dbDEMC: hsa-let-7f miR2Disease:dbDEMC:
hsa-mir-199a unconfirmed hsa-mir-29b miR2Disease:dbDEMC:
hsa-mir-200b dbDEMC: hsa-let-7i dbDEMC:
hsa-mir-18a miR2Disease:dbDEMC: hsa-mir-205 dbDEMC:
hsa-let-7a miR2Disease:dbDEMC: hsa-let-7d dbDEMC:
hsa-mir-19a miR2Disease:dbDEMC: hsa-mir-122 unconfirmed
hsa-mir-143 miR2Disease:dbDEMC: hsa-mir-196a miR2Disease:dbDEMC:
hsa-mir-29a miR2Disease:dbDEMC: hsa-mir-106b miR2Disease:dbDEMC:
hsa-mir-146a dbDEMC: hsa-mir-210 dbDEMC:
hsa-mir-19b miR2Disease:dbDEMC: hsa-let-7g miR2Disease:dbDEMC:
hsa-mir-200c miR2Disease:dbDEMC: hsa-mir-34b miR2Disease:dbDEMC:
hsa-let-7b miR2Disease:dbDEMC: hsa-mir-214 dbDEMC:
hsa-mir-92a unconfirmed hsa-mir-125a miR2Disease:dbDEMC:
hsa-mir-223 miR2Disease:dbDEMC: hsa-mir-10b miR2Disease:dbDEMC:
hsa-mir-200a unconfirmed hsa-mir-182 miR2Disease:dbDEMC:
hsa-mir-1 miR2Disease:dbDEMC: hsa-mir-93 miR2Disease:dbDEMC:
hsa-mir-9 miR2Disease:dbDEMC: hsa-mir-181b miR2Disease:dbDEMC:
hsa-let-7c dbDEMC: hsa-mir-25 miR2Disease:dbDEMC:
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instance, the miR-17-92(2nd) cluster is overexpressed in renal
cell carcinoma and has an oncogenic effect on it [64]. Studies
also indicated that miR-145 (3rd) functions as tumor suppressor
and targets two oncogenes, ANGPT2 and NEDD9, in renal cell
carcinoma [65]. What’s more, miR-34a (4th) promote renal
senescence by suppressing mitochondrial antioxidative enzymes
[66] while miR-155(1st) expression was absent in nonlymphoid
organs such as lung, heart and kidney [67].

Besides the aforementioned disease, we took advantage of
ELLPMDA to rank all the miRNA-disease pairs between 383
diseases and 495 miRNAs in HMDD v2.0 [41] database (See
Supplementary Table 1). We hope future biological experi-
ments can confirm the prediction of ELLPMDA.

Secondly, in order to validate the predictive ability of
ELLPMDA in new diseases without any known linked miRNAs,
we set up a special case study. In this case, we examined
ELLPMDA on Lung Neoplasms, a common human cancer
which has a lot of experimentally verified related miRNAs. Simi-
lar to case study 1, we utilized the experimentally verified
miRNA-disease associations achieved from HMDD v2.0 data-
base [41] as the initial training set, however, by this time, we
removed all the associations including lung neoplasms from the
training set. Hence, lung neoplasms could be regard as a disease
without any known related miRNAs. After executing ELLPMDA
base on the brand new training set, we chose the top 50 of pre-
dicted miRNAs and examined them in dbDEMC [39], HMDD
v2.0 [41] and miR2Disease [40] databases. As a result, 10 out of
top 10 and 49 out of top 50 (See Table 4) potential associations
were confirmed. For example, focus on the top 5 predicted miR-
NAs. High expression of miR-21(1st) and miR-155 (2nd) could
predict recurrence and unfavorable survival in non-small cell
lung neoplasms [68]. Also, studies indicated that circulating
miR-125b (5th) is a novel biomarker for screening non-small-
cell lung neoplasms [69]. Besides, miR-17-92 (4th) is

overexpressed in human lung neoplasms cell and evidences had
proved that it plays a key role in lung neoplasms development
[70,71]. What’s more, the reduction of miR-221 (3rd) inhibited
cell proliferation and induced mitochondrial-mediated apoptosis
in human lung neoplasms cells [72].

Finally, in order to examine the robustness of ELLPMDA’s
predictive accuracy in different databases, we utilized old version
of HMDD, a database which only include 1395 experimentally
verified associations between 271 miRNAs and 137 diseases, and
these associations were treated as training samples. In this case,
we tested ELLPMDA on Breast Neoplasms, a popular human
disease which threating female’s health a lot. Breast Neoplasms
is now considered as the most leading type of invasive cancer in
women with 1,384,155 estimated new cases worldwide and with
nearly 459,000 related deaths each year [73]. It has been pre-
dicted that the worldwide incidence of female breast cancer will
reach approximately 3.2 million new cases per year by 2050 [73].
These scary numbers indicate that it is extremely urgent for us
to get more information about breast neoplasms to further inter-
pret it and develop more effective methods for disease detection
and treatment. In fact, lots of evidences had proved that various
miRNAs were linked with breast neoplasms. For example, the
overexpression of miR-21 in human breast neoplasms is associ-
ated with advanced clinical stage, lymph node metastasis and

Table 2. Prediction of the top 50 predicted miRNAs associated with Esophageal
Neoplasms based on known associations in HMDD v2.0 database. The first column
records top 1–25 related miRNAs. The second column records the top 26–50
related miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-200b dbDEMC: hsa-mir-29b dbDEMC:
hsa-let-7e dbDEMC: hsa-mir-146b dbDEMC:
hsa-let-7d dbDEMC: hsa-mir-191 dbDEMC:
hsa-let-7f unconfirmed hsa-mir-106a dbDEMC:
hsa-let-7i dbDEMC: hsa-mir-18b dbDEMC:
hsa-mir-18a dbDEMC: hsa-mir-194 miR2Disease:dbDEMC:
hsa-mir-125a dbDEMC: hsa-mir-302b dbDEMC:
hsa-mir-17 dbDEMC: hsa-mir-24 dbDEMC:
hsa-mir-19b dbDEMC: hsa-mir-7 dbDEMC:
hsa-mir-429 dbDEMC: hsa-mir-199b dbDEMC:
hsa-let-7g dbDEMC: hsa-mir-181b dbDEMC:
hsa-mir-218 unconfirmed hsa-mir-30d dbDEMC:
hsa-mir-132 dbDEMC: hsa-mir-20b dbDEMC:
hsa-mir-125b dbDEMC: hsa-mir-302c dbDEMC:
hsa-mir-127 dbDEMC: hsa-mir-195 dbDEMC:
hsa-mir-30c dbDEMC: hsa-mir-30a dbDEMC:
hsa-mir-106b dbDEMC: hsa-mir-181a dbDEMC:
hsa-mir-9 dbDEMC: hsa-mir-107 miR2Disease:dbDEMC:
hsa-mir-10b dbDEMC: hsa-mir-142 dbDEMC:
hsa-mir-16 dbDEMC: hsa-mir-182 dbDEMC:
hsa-mir-29a dbDEMC: hsa-mir-373 miR2Disease:dbDEMC:
hsa-mir-222 dbDEMC: hsa-mir-92b dbDEMC:
hsa-mir-1 dbDEMC: hsa-mir-30e unconfirmed
hsa-mir-221 dbDEMC: hsa-mir-204 unconfirmed
hsa-mir-93 dbDEMC: hsa-mir-367 dbDEMC:

Table 3. Prediction of the top 50 predicted miRNAs associated with Kidney Neo-
plasms based on known associations in HMDD v2.0 database. The first column
records top 1–25 related miRNAs. The second column records the top 26–50
related miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-155 dbDEMC: hsa-mir-29b miR2Disease:
dbDEMC:

hsa-mir-17 miR2Disease: hsa-let-7c dbDEMC:
hsa-mir-145 dbDEMC: hsa-mir-1 dbDEMC:
hsa-mir-34a dbDEMC: hsa-mir-429 dbDEMC:
hsa-mir-125b unconfirmed hsa-mir-210 miR2Disease:

dbDEMC:
hsa-mir-200b miR2Disease:

dbDEMC:
hsa-mir-34b dbDEMC:

hsa-mir-221 unconfirmed hsa-let-7f miR2Disease:
dbDEMC:

hsa-mir-20a miR2Disease:
dbDEMC:

hsa-mir-106b miR2Disease:
dbDEMC:

hsa-mir-199a miR2Disease:
dbDEMC:

hsa-mir-143 dbDEMC:

hsa-mir-146a dbDEMC: hsa-mir-93 dbDEMC:
hsa-mir-126 miR2Disease:

dbDEMC:
hsa-let-7e unconfirmed

hsa-mir-200a dbDEMC: hsa-mir-218 dbDEMC:
hsa-let-7a dbDEMC: hsa-mir-27a miR2Disease:

dbDEMC:
hsa-mir-19a dbDEMC: hsa-mir-223 dbDEMC:
hsa-mir-18a dbDEMC: hsa-mir-182 miR2Disease:

dbDEMC:
hsa-mir-16 dbDEMC: hsa-mir-10b dbDEMC:
hsa-mir-19b miR2Disease:

dbDEMC:
hsa-let-7i dbDEMC:

hsa-mir-222 dbDEMC: hsa-mir-196a dbDEMC:
hsa-mir-29a miR2Disease:

dbDEMC:
hsa-mir-101 miR2Disease:

dbDEMC:
hsa-mir-92a unconfirmed hsa-mir-133a unconfirmed
hsa-mir-205 unconfirmed hsa-mir-29c miR2Disease:

dbDEMC:
hsa-let-7b unconfirmed hsa-mir-214 miR2Disease:

dbDEMC:
hsa-mir-9 dbDEMC: hsa-mir-146b dbDEMC:
hsa-mir-34c dbDEMC: hsa-mir-181a dbDEMC:
hsa-let-7d dbDEMC: hsa-let-7g dbDEMC:
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patient poor prognosis [74]. MiR-17-5p regulates breast neo-
plasms cell proliferation by inhibiting translation of AIB1
mRNA [75] while miR-125b acts as a marker predicting chemo-
resistance in breast neoplasms [76]. Besides, biological researches
had convinced that miR-210 is an independent prognostic factor
in breast neoplasms [77] .We took advantage of old version of
HMDD as training set and implemented ELLPMDA. As a result,
10 out of top 10 and 49 out of top 50 predicted miRNAs had
been confirmed in dbDEMC [39], HMDD v2.0 [41] and miR2-
Disease [40] databases (see Table 5).

In conclusion, based on the evaluation in all cross validation
(global LOOCV, local LOOCV and 5-fold CV) and three kinds
of case studies, ELLPMDA achieved an excellent predictive
accuracy which is significantly better than most of previous

methods. What’s more, ELLPMDA was based on global similar
network and could be applied to new diseases without any
know linked miRNAs.

Discussions

With the rapid development of human society, human health is
currently one of the most concerned topics worldwide, further-
more, how to overcome more and more human diseases is an
international problem which has received a great many of atten-
tions. Considering that miRNAs play a critical role in multiple
biological processes as well as the developments and progressions
of various human diseases, identifying potential miRNA-disease
associations is currently a vital research topic which might con-
tribute a lot in the protection, detection and treatment of complex
human diseases. However, it will be very expensive and time-con-
suming if we test all the miRNA-disease pairs using biological
experiment. Therefore, lots of computational models have been
proposed to predict novel associations between miRNAs and dis-
eases. Although these previous methods have successfully pre-
dicted a great many of miRNA-disease associations, there were
always limitations in these methods, such as applicable scope and
predictive accuracy. To solve these problems, in this study, we
developed a novel predictive method ELLPMDA, which utilized
ensemble learning to combine results given by three classic algo-
rithms to reveal potential miRNA-disease associations. As men-
tioned above, in LOOCV, the AUCs of ELLPMDA is 0.9181 and
0.8181 in global case and local case, respectively. Also, in 5-fold
CV, the AUC of ELLPMDA is 0.9193+/¡0.0002, which means
the predictive accuracy of ELLPMDA in different cases is obvi-
ously better than most of previous methods. Furthermore, case
studies indicated that ELLPMDA could be implemented in all
kinds of diseases, whatever related miRNAs exist or not, and
ELLPMDA gave excellent performances in various diseases.

The success of ELLPMDA can be mainly attributed to sev-
eral factories. First and the most important factory is that we
exploited ensemble learning into novel miRNA-disease associa-
tion prediction. In this study, we developed three models
depending on classic similarity-based algorithms and utilized
these models into prediction works. Every model gave ranks of
all the miRNA-disease pairs and we obtained the overall predic-
tive result by exploiting ensemble learning to weightedly com-
bine the sorted results given by these separate models. Concrete
weight was calculated according to the predictive accuracies of
these methods in case study 1. By combining results from three
models, we achieved an overall result which was better than all
the three results given by single model. Secondly, integrated
similarity for miRNAs and diseases, which obtained by inte-
grating Gaussian interaction profile kernel similarity, miRNA
functional similarity and disease semantic similarity gave us
precise information about the similarities between every
miRNA-miRNA pair and disease-disease pair. Such informa-
tion enabled us to take advantage of similarity-based algo-
rithms on miRNA-disease network. Besides, experimentally
verified associations between miRNA-disease given by HMDD
v2.0 database [41] helped a lot, because it is the foundation to
construct the miRNA-disease networks.

Although ELLPMDA achieved a great performance, there are
still a few ways to further improve it. First, the current miRNA-

Table 4. Prediction of the top 50 predicted miRNAs associated with Lung Neo-
plasms based on known associations in HMDD v2.0 database. In this case study,
we eliminate all the known associations which including Lung Neoplasms to con-
sider Lung Neoplasms as a new disease without any known related miRNAs. The
first column records top 1–25 related miRNAs. The second column records the top
26–50 related miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-21 miR2Disease:dbDEMC:
HMDD:

hsa-mir-
205

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
155

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
223

HMDD:

hsa-mir-
221

dbDEMC:HMDD: hsa-mir-
200c

miR2Disease:dbDEMC:
HMDD:

hsa-mir-17 miR2Disease:HMDD: hsa-mir-
34b

dbDEMC:HMDD:

hsa-mir-
125b

miR2Disease:HMDD: hsa-mir-
29b

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
222

dbDEMC:HMDD: hsa-mir-93 miR2Disease:dbDEMC:
HMDD:

hsa-mir-
34a

dbDEMC:HMDD: hsa-mir-
210

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
199a

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
200a

miR2Disease:dbDEMC:
HMDD:

hsa-mir-16 miR2Disease:dbDEMC: hsa-mir-
106b

dbDEMC:

hsa-mir-
20a

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
182

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
146a

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
214

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
145

miR2Disease:dbDEMC:
HMDD:

hsa-let-7c miR2Disease:dbDEMC:
HMDD:

hsa-mir-
18a

miR2Disease:dbDEMC:
HMDD:

hsa-let-7d miR2Disease:dbDEMC:
HMDD:

hsa-mir-
126

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
181a

dbDEMC:HMDD:

hsa-mir-
29a

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
143

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
19b

dbDEMC:HMDD: hsa-mir-
133a

dbDEMC:HMDD:

hsa-mir-
19a

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
122

unconfirmed

hsa-let-7a miR2Disease:dbDEMC:
HMDD:

hsa-mir-
196a

dbDEMC:HMDD:

hsa-mir-1 miR2Disease:dbDEMC:
HMDD:

hsa-mir-
141

miR2Disease:dbDEMC:

hsa-mir-
200b

miR2Disease:dbDEMC:
HMDD:

hsa-let-7e miR2Disease:HMDD:

hsa-mir-
15a

dbDEMC: hsa-mir-
101

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
34c

dbDEMC:HMDD: hsa-mir-31 miR2Disease:dbDEMC:
HMDD:

hsa-mir-9 miR2Disease:HMDD: hsa-mir-
29c

miR2Disease:dbDEMC:
HMDD:

hsa-let-7b miR2Disease:HMDD: hsa-let-7f miR2Disease:HMDD:
hsa-mir-
92a

HMDD: hsa-mir-
27a

dbDEMC:HMDD:
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disease association is insufficient. Thus, more information about
experimentally confirmed miRNA-disease associations could help a
lot by completing the miRNA-disease association network and fur-
ther improving the accuracy of all the existing similarity networks.
Apparently, ELLPMDAwill perform better when more information
is available. Besides, there is not a powerful method to choose the
optimal parameter b for ELLPMDA. What’s more, the weight of
three methods might be calculated in a more reasonable way.

For future work, we would like to pay attention to the follow-
ing two aspects. First, as discussed in [78], biological systems are
seen as a network of interconnected components, which indi-
cates the importance of taking the interconnection into account.
In our approach, after obtaining the predicted similarities
between all the miRNAs and diseases given by ELLPMDA,
examining the existence of certain regular loops between these

similarities is a wise practice to further improve the performance
of our method. For example, we would expect an association
exists between disease di and miRNA rj if all the diseases which
are associated with miRNA rm and rn are associated with
miRNA rj, and disease di is associated with both miRNA rm
and rn. In addition, [79] offers us a method to modeling existing
data, which invites us countless inspiration for further study.

Materials and methods

Human miRNA-disease associations

Information about human miRNA-disease associations is avail-
able in HMDD v2.0 database [41], which includes 5430 distinct
experimentally confirmed miRNA-disease associations about
495 miRNAs and 383 diseases. For convenience, we con-
structed an adjacency matrix A495�383 to better describe these
associations. The element A i; jð Þ equals to 1 if there is an exper-
imentally confirmed association between miRNA ri and dis-
ease dj. Otherwise, A i; jð Þ equals to 0.

MiRNA functional similarity

Based on the assumption that functionally similar miRNAs tend
to be associated with phenotypically similar diseases, the miRNA
functional similarity was calculated in previous work [32]. Thanks
to these excellent works, we can straightly download the miRNA
functional similarity data from http://www.cuilab.cn/files/images/
cuilab/misim.zip. Similar to adjacency matrix A495�383, the matrix
MS495�495 was constructed, in which the entity MS i; jð Þ repre-
sented the value of similarity between the miRNAs ri and rj.

Disease semantic similarity model 1

It is reasonable to use a distinct Directed Acyclic Graph (DAG) to
describe each disease. To state it more clearly, we exploited a DAG
Dð Þ ¼ D; T Dð Þ; E Dð Þð Þ to represent a disease D, in which every
disease is regard as a node and there are directed edges from par-
ent nodes to child nodes. T Dð Þ is a node set which contains dis-
ease D itself and its parent nodes and E Dð Þ is a edge set including
all the directed edges. Then we defined the contribution of disease
d in DAG (D) to the semantic value of disease D as follows:

D1D dð Þ ¼ 1 if d ¼ D

D1D dð Þ ¼ max D � D1D d0ð Þ j d 0
�children of d

� �
if d 6¼ D

�

(1)

where D is the semantic contribution factor. The contribution
score for disease d is inversely proportional to the distance from d
to D. The semantic value of disease D can be defined as follows:

DV1 Dð Þ ¼
X
d2T Dð Þ

D1D dð Þ (2)

According to the observation that two diseases will have
larger similarity score if they have larger shared part of their
DAGs, the semantic similarity value between diseases di and dj
can be defind as follows:

Table 5. Prediction of the top 50 predicted miRNAs associated with Breast Neo-
plasms based on known associations in old version of HMDD database. The first
column records top 1–25 related miRNAs. The second column records the top 26–
50 related miRNAs.

miRNA Evidence miRNA Evidence

hsa-let-7b dbDEMC:HMDD: hsa-mir-
335

miR2Disease:dbDEMC:
HMDD:

hsa-let-7i miR2Disease:dbDEMC:
HMDD:

hsa-mir-
106a

dbDEMC:

hsa-let-7e dbDEMC:HMDD: hsa-mir-
26a

miR2Disease:dbDEMC:
HMDD:

hsa-let-7c dbDEMC:HMDD: hsa-mir-
128b

miR2Disease:

hsa-let-7g dbDEMC:HMDD: hsa-mir-
203

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
191

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
181a

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
92b

dbDEMC: hsa-mir-
135a

dbDEMC:HMDD:

hsa-mir-
101

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
199b

dbDEMC:HMDD:

hsa-mir-
126

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
532

dbDEMC:

hsa-mir-
520b

dbDEMC:HMDD: hsa-mir-
130b

dbDEMC:

hsa-mir-
30e

unconfirmed hsa-mir-24 dbDEMC:HMDD:

hsa-mir-
130a

dbDEMC: hsa-mir-
99a

dbDEMC:

hsa-mir-
223

dbDEMC:HMDD: hsa-mir-95 dbDEMC:

hsa-mir-
18b

dbDEMC:HMDD: hsa-mir-
186

dbDEMC:

hsa-mir-
27a

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
520c

miR2Disease:HMDD:

hsa-mir-
373

miR2Disease:dbDEMC:
HMDD:

hsa-mir-22 miR2Disease:dbDEMC:
HMDD:

hsa-mir-98 miR2Disease:dbDEMC: hsa-mir-
196b

dbDEMC:

hsa-mir-
100

dbDEMC:HMDD: hsa-mir-
491

dbDEMC:

hsa-mir-
99b

dbDEMC: hsa-mir-
455

dbDEMC:

hsa-mir-
372

dbDEMC: hsa-mir-
193b

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
192

dbDEMC: hsa-mir-
29c

miR2Disease:dbDEMC:
HMDD:

hsa-mir-32 dbDEMC: hsa-mir-
23b

dbDEMC:HMDD:

hsa-mir-16 dbDEMC:HMDD: hsa-mir-
30a

miR2Disease:HMDD:

hsa-mir-
92a

HMDD: hsa-mir-
224

dbDEMC:HMDD:

hsa-mir-
182

miR2Disease:dbDEMC:
HMDD:

hsa-mir-
340

dbDEMC:HMDD:
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SS1 di; dj
� � ¼

X
t 2 T dið Þ\ T djð Þ D1di tð Þ þ D1dj tð Þ

� �
DV1 dið Þ þ DV1 dj

� � (3)

Where SS1383�383 is the disease semantic similarity matrix 1.

Disease semantic similarity model 2

What’s more, we further constructed another disease semantic
similarity matrix by considering the difference between the
contributions of different disease terms in the same layer of
DAG Dð Þ. Apparently, in the SS1 defined above, the disease terms
in the same layer of DAG Dð Þ have the same contribution to the
semantic value of disease D. However, it might be unfair if we
give two diseases the same contribution when they appear differ-
ent times in disease DAGs. To state it more clearly, if two dis-
eases lie in the same layer of DAG Dð Þ and the first disease
appears much more times in disease DAGs than the second dis-
ease, we believed that the second disease is more specific to dis-
ease D. Thus, it is reasonable to give the second disease a higher
weight. Thus, the contribution of disease term d in DAG Dð Þ to
the semantic value of disease D can be defined as follows:

D2D dð Þ ¼ �log
the number of DAGs including d

the number of diseases

� �
(4)

Combining the weighted contributions and the similar ways in
Disease semantic similarity model 1, the disease semantic similar-
ity value 2 between diseases di and dj can be calculated as follows:

SS2 di; dj
� � ¼

X
t 2 T dið Þ \ T djð Þ D2di tð Þ þ D2dj tð Þ

� �
DV2 dið Þ þ DV2 dj

� � (5)

Where SS2383�383 is the disease semantic similarity matrix 2.

Gaussian interaction profile kernel similarity

According to the assumption that functionally similar miRNAs tend
to be associated with similar diseases, Gaussian interaction profile
kernel similarity for diseases are calculated by considering the topo-
logic information of known miRNA–disease association network.
We respectively used binary vector IV dið Þ and IV rj

� �
to denote the

interaction profiles of disease di and miRNA rj. Because the adja-
cencymatrix contains the information about the associations between
diseases and miRNAs, we use the IV dið Þ and IV rj

� �
to represent the

i-th row and j-th column in the adjacency matrix A495�383 which was
defined above. Thus, the Gaussian interaction profile kernel similarity
of diseases and miRNAs can be defined as follows:

GD di; dj
� � ¼ exp �bd kIV dið Þ � IV dj

� �k2� �
(6)

GR ri; rj
� � ¼ exp �br kIV rið Þ � IV rj

� �k2� �
(7)

where parameter bd and br were used to control the kernel band-
width, which can be obtained by normalizing the new bandwidth

parameter b0
d and b

0
r (Both were set as 1 based on previous work

(van Laarhoven, T. et al.. (2011)) [80]) which can be denoted as fol-
lows:

bd ¼ b0
d =

1
n

Xn

i¼1

kIV dið Þk2
0
@

1
A (8)

br ¼ b0
r =

1
m

Xm

i¼1

kIV rið Þk2
0
@

1
A (9)

Yet we got two matrix GD383�383 and GR495�495, in which the entity
GD i; jð Þ represent the Gaussian interaction profile kernel similarity
between disease di and diseases dj, andGR i; jð Þ represent the Gauss-
ian interaction profile kernel similarity between miRNAs ri and rj.

Integrated similarity for miRNAs and diseases

After the above processes, we now have two matricesMS495�495 and
GR495�495 including similarity value between miRNAs, and three
matrices SS1383�383, SS2383�383 and GD383�383 including similarity
value between diseases. By combining these matrices, the integrated
similarity for miRNAs and diseases were defined as follows:

SD di; dj
� � ¼

SS1 di þ dj
� �þ SS2 di þ dj

� �
2

di and dj have semantic similarity

GD di; dj
� �

otherwise

8<
:

(10)

SR ri; rj
� � ¼ MS ri; rj

� �
ri and rj have functional similarity

GR ri; rj
� �

otherwise

�

(11)

Where the SD383�383 represents the integrated similarity
value between diseases and SR495�495 represent the integrated
similarity value between miRNAs.

Ellpmda

In this study, we exploited ensemble learning into novel miRNA-
disease association prediction. In short, ensemble learning is a
common machine learning method which could improve the clas-
sification accuracy by combining classified results given by differ-
ent classifiers. Based on this method, we weightedly combined the
rank results given by Common Neighbors, Jaccard index and Katz
index to achieve a better prediction result (see Fig. 2).

Common neighbors

For a note x, let g xð Þ donates the neighbor nodes set of node x.
Intuitively speaking, if two nodes x and y share more neighbor
nodes, a link is more likely to exist between x and y. In general,
Common Neighbors score between node x and node y can be
defined as follows:

SCNxy ¼ j g xð Þ\ g yð Þ j (12)

Obviously, this equation directly count the number of
nodes which are the neighbor of both x and y. In our
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study, considering the structure of our integrated network,
which was obtained by combining human miRNA-disease
associations and integrated similarity for miRNAs and dis-
eases, we defined gd xð Þ as the neighbor nodes set of x which
only contains disease nodes while the gm xð Þ donates the
neighbors nodes set of x which only contain miRNA nodes.
We can then redefine CN score between disease di and
miRNA rj as:

SCN
0

dirj
¼
X

z12gdðdiÞIgdðrjÞ
z22gmðdiÞIgmðrjÞ

SD di; z1ð Þ þ SR z2; rj
� �

(13)

After calculating the scores of all the miRNA-disease pairs
(between 495 miRNAs and 383 diseases), we were able to
rank all the candidate samples based on CN score and fur-
ther obtain an rank matrix RankCN , where the element
RankCN i; jð Þ represents the rank of ri � dj pair. For exam-
ple, if the CN score between miRNA 35 and disease 46 is
highest and miRNA 78 and disease 365 achieved the second
highest CN score, RankCN 35; 46ð Þ equals to 1 and
RankCN 78; 365ð Þ equals to 2.

Jaccard index

The Jaccrad index [81] could be regard as the normalized Com-
mon Neighbors. Considering that if a node x have only 5 neigh-
bor nodes and a node y have 200 neighbor nodes, however,
they both have 5 common neighbor nodes with node z. It is
reasonable to believe x is more ‘valuable’ to node z. As a result,

to eliminate the bias to nodes with a lot of neighbor nodes, we
defined JI score between disease di and miRNA rj as follows:

SJIdirj ¼
j g dið Þ \ g rj

� � j
j g dið Þ [ g rj

� � j (14)

where

j g dið Þ \ g rj
� � j ¼ SCN

0
dirj (15)

j g dið Þ[ g rj
� � j ¼

X
z12gdðdiÞ[ gmðdiÞ
z22gdðrjÞ[ gmðrjÞ

SD di; z1ð Þ þ A di; z1ð Þ þ SR z2; rj
� �

þA z2; rj
� �

(16)

In general, we ought to normalize CN score between disease di and
miRNA rj by dividing the number of neighbor nodes of them.
However, to take the integrated similarity for miRNAs and diseases
into account, we used the similarity between two nodes to replace
the existence of a link between them. Thus, equation (16) is easy to
understand. Similar to Common Neighbors, we obtained a rank
matrix RankJI to save the ranks for all the miRNA-disease pairs.

Katz index

The Katz index [82] is a path-dependent global measure which
directly sums all the possible paths between two nodes in a net-
work and is exponentially damped to give the shorter paths
more weight [83] .In order to take all the aforementioned mate-
rials into account, the matrix MD878�878, a biadjacency matrix
consist of human miRNA-disease associations matrix and inte-
grated similarity for miRNAs and diseases, has been con-
structed. It can be represented as follow:

MD ¼ SR A

A
T

SD

� �
(17)

In this way, we could construct a network, in which every
miRNA and disease represents a node. Undirected edges exist
between two miRNAs or two diseases, and the weight of edge
equals to the similarity between them (An edge won’t exist if
the similarity between two nodes is 0). Moreover, every experi-
mentally confirmed miRNA-disease association corresponds an
edge with a weight of 1. After establishing this network, path-
depended algorithm could be applied on our network.

In our work for potential miRNA-disease association predic-
tion, calculating the similarity between diseases and miRNAs
could be transform to the problem of counting the walks from
one miRNA nodes to a disease node. Considering that shorter
walks tend to contribute more, we introduced a nonnegative
parameter b to control the weight of walks with different lengths.
A smaller value of b means the weights of longer walks is smaller.
Thus, the Katz index could be calculated as follows:

Sdirj ¼
Xk
l¼1

blSlðdirjÞ (18)

Figure 2. Flow chart of ELLPMDA in novel miRNA-disease association prediction by
integrating known miRNA-disease associations, miRNA functional similarity, dis-
ease semantic similarity, and Gaussian interaction profile kernel similarity.
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where Sl dirjð Þ denotes the number of walks with length l which
links node di and node rj. Then, we further let k! 1 and
replaced the bl by bl , the whole Katz index could be written in
matrix form as:

SKatz ¼ I � b �MDð Þ�1 � I (19)

The SKatz records the similarities between all the nodes. Specifi-
cally, it can be represented by a partitioned matrix:

SKatz ¼ S1 S3

S2 S4

� �
(20)

Being aware of it was generated based on matrix MD878�878, it
could be easily detected that S3 record the association probabil-
ity between every miRNA-disease pair. Also, to ensure that the
Katz index converge, the value of b must be less than the
reciprocal of the largest eigenvalue of MD878�878. Considering
that longer walks tend to be meaningless for our predictive
work, we set k to 1, 2 and 3 respectively to evaluate the influ-
ence of this parameter. Based on equation (18), the SKatz can be
writing as follows:

SKatz ¼ bS1 þ b2S2 þ � � � þ bnSn þ � � � (21)

Here, Si means the probability of going from node x to node y
in i steps which could be represented by matrix A, SD and SR
as follows:

S1 ¼ A (22)

S2 ¼ SR � Aþ A � SD (23)

S3 ¼ SR3 � Aþ A � AT � SR � Aþ SR � A � AT � A�
þA � SD � AT � AÞ þ A � AT � A � SDþ SR2 � A � SD�
þ SR � A � SD2 þ A � SD3Þ (24)

According to previous research [84] and our own test, we chose
b as 0.01. Similar to Common Neighbors, we obtained a rank
matrix RankKI to save the ranks for all the miRNA-disease
pairs.

Ensemble learning

As mentioned above, we would achieve a rank matrix of every
method which enabled us to examine these methods in case
study 1. We chose 14 popular human diseases and predicted
the top 50 potential associations for them. Therefore, there
were 700 predictive results and we confirmed these results in
miR2Disease and dbDEMC [39,40]. Let em m ¼ 1; 2; 3ð Þ
denoted as the predicted error rate of every method respec-
tively. Base on classic ensemble learning method, we calculated
the weight of methods as follows:

am ¼ 1
2
log

1� em
em

(25)

As a result, the final weights of Common Neighbor, Jaccard index
and Katz index are 0.1725, 0.3992 and 0.4283. By this time, we

could take advantage of these weights to weightedly combine
RankCN, RankJI and RankKI to obtain the overall rank matrix.
As mentioned above, every miRNA-disease pair could obtain a
rank based on Common Neighbor, Jaccard index and Katz index.
To accurately combine these ranks, we exploited reciprocal rank-
ing method, which means a pair ranks t will achieve a score 1

t .
Hence, every miRNA-disease pair could achieve three scores
depending on its ranks in the aforementioned three methods.
Exploiting the final weight to weightedly combine the three
scores of all the miRNA-disease pairs and taking advantage of
the same sorting method used in Common Neighbor, we finally
obtained the overall rank matrix Rank, which records the ranks
of every miRNA-disease pair given by ELLPMDA.
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