
EFFICIENT ACTION ROBUST REINFORCEMENT LEARNING WITH
PROBABILISTIC POLICY EXECUTION UNCERTAINTY

Guanlin Liu
University of California, Davis

One Shields Avenue, Davis, CA 95616
glnliu@ucdavis.edu

Zhihan Zhou
Northwestern University

633 Clark Street, Evanston, IL 60208
zhihanzhou@u.northwestern.edu

Han Liu
Northwestern University

633 Clark Street, Evanston, IL 60208
hanliu@northwestern.edu

Lifeng Lai
University of California, Davis

One Shields Avenue, Davis, CA 95616
lflai@ucdavis.edu

ABSTRACT

Robust reinforcement learning (RL) aims to find a policy that optimizes the worst-case performance
in the face of uncertainties. In this paper, we focus on action robust RL with the probabilistic
policy execution uncertainty, in which, instead of always carrying out the action specified by the
policy, the agent will take the action specified by the policy with probability 1− ρ and an alternative
adversarial action with probability ρ. We establish the existence of an optimal policy on the action
robust MDPs with probabilistic policy execution uncertainty and provide the action robust Bellman
optimality equation for its solution. Furthermore, we develop Action Robust Reinforcement Learning
with Certificates (ARRLC) algorithm that achieves minimax optimal regret and sample complexity.
Furthermore, we conduct numerical experiments to validate our approach’s robustness, demonstrating
that ARRLC outperforms non-robust RL algorithms and converges faster than the robust TD algorithm
in the presence of action perturbations.

1 Introduction

Reinforcement learning (RL), a framework of control-theoretic problem that makes decisions over time under an
unknown environment, has many applications in a variety of scenarios such as recommendation systems [1], autonomous
driving [2], finance [3] and business management [4], to name a few. However, the solutions to standard RL methods
are not inherently robust to uncertainties, perturbations, or structural changes in the environment, which are frequently
observed in real-world settings. A trustworthy reinforcement learning algorithm should be competent in solving
challenging real-world problems with robustness against perturbations and uncertainties.

Robust RL aims to improve the worst-case performance of algorithms deterministically or statistically in the face of
uncertainties. The uncertainties could happen in different MDP components, including observations/states [5, 6], actions
[7, 8], transitions [9, 10], and rewards [11, 12]. Robust RL against action uncertainties focuses on the discrepancy
between the actions generated by the RL agent and the conducted actions [7]. Thus, action uncertainties can be called
as policy execution uncertainties. Taking the robot control as an example, such policy execution uncertainty may come
from the actuator noise, limited power range, or actuator failures in the real world. Taking the medication advice in
healthcare as another example, such policy execution uncertainty may come from the patient’s personal behaviors like
drug refusal, forgotten medication, or overdose etc.

Adversarial training [13, 14] has been recognized as one of the most effective approaches in traditional supervised
learning tasks in training time defenses. A lot of robust RL methods adopt the adversarial training framework and thus
assume an adversary conducting adversarial attacks to mimic the naturalistic uncertainties [15, 7, 8]. Training with an
adversary can naturally be formulated as a zero-sum game between the adversary and the RL agent [7].

ar
X

iv
:2

30
7.

07
66

6v
2

 [
cs

.L
G

]
 2

0
Ju

l 2
02

3

[7] proposed probabilistic action robust MDP (PR-MDP) in which, with probability ρ, an alternative adversarial action
is taken. [7] introduced the Probabilistic Robust Policy Iteration (PR-PI) algorithm to train an adversary along with the
agent. PR-PI algorithm converges toward the optimal value but requires a MDP solver to solve the optimal adversarial
policy when the agent policy is given and the optimal agent policy when the adversarial policy is given. Thus, it is not
suit for unknown reward functions or unknown transition probabilities. A similar idea as the PR-MDP was presented
[8], which extends temporal difference (TD) learning algorithms by a new robust operator and shows that the new
algorithms converge to the optimal robust Q-function. However, no theoretical guarantee on sample complexity or
regret is given.

In this paper, we aim to fill in the gaps of the existing work on policy execution uncertainties. In particular, we develop
a minimax optimal sample efficient algorithm for action robust RL with probabilistic policy execution uncertainty. Our
major contributions are summarized as follows:

• We model the episodic RL with probabilistic policy execution uncertain set. We provide the action robust
Bellman equation and the action robust Bellman optimality equation. We show that there always exists an
optimal robust policy which is deterministic and can be solved via the induction of the action robust Bellman
optimality equation.

• We develop a new algorithm, Action Robust Reinforcement Learning with Certificates (ARRLC), for episodic
action robust MDPs, and show that it achieves minimax order optimal regret and minimax order optimal
sample complexity.

• We develop a model-free algorithm for episodic action robust MDPs, and analyze its regret and sample
complexity.

• We conduct numerical experiments to validate the robustness of our approach. In our experiments, our robust
algorithm achieves a much higher reward than the non-robust RL algorithm when being tested with some
action perturbations; and our ARRLC algorithm converges much faster than the robust TD algorithm in [8].

2 Related work

We mostly focus on papers that are related to sample complexity bounds for the episodic RL and the two-player
zero-sum Markov game, and action robust RL, that are close related to our model. We remark that there are also related
settings, e.g., infinite-horizon discounted MDP [16, 17], robust RL with other uncertainties [12, 5, 10], robust offline
RL [18, 19], adversarial training with a generative RL model [20, 21], adversarial attacks on RL [22, 23, 24], etc. These
settings are beyond the scope of this paper, though our techniques may be also related to these settings.

Action robust RL [15] introduce robust adversarial reinforcement learning to address the generalization issues in
reinforcement learning by training with a destabilizing adversary that applies disturbance forces to the system. [7]
introduce two new criteria of robustness for reinforcement learning in the face of action uncertainty. One is probabilistic
action robust MDP (PR-MDP) in which, instead of the action specified by the policy, an alternative adversarial action is
taken with probability ρ. Another is noisy action robust MDP (NR-MDP) criterion, in which a perturbation is added to
the continues action vector itself. They generalize their policy iteration approach to deep reinforcement learning (DRL)
and provide extensive experiments. [8] extends TD learning algorithms by a new robust operator and shows that the
new algorithms converge to the optimal robust Q-function.

Sample Complexity Bounds for the Episodic RL There is a rich literature on sample complexity guarantees for
episodic tabular RL, for example [25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Most relevant to our paper is the work about
policy certificates [31].The algorithm outputs policy certificates that bound the sub-optimality and return of the policy
in the next episode. They show that computing certificates can even improve the sample-efficiency of optimism-based
exploration.

Sample Complexity Bounds for the Two-player Zero-sum Markov Game Training with an adversary can naturally
be formulated as a zero-sum game between the adversary and the RL agent. Some sample efficient algorithms for
two-player zero-sum Markov game can be used to train the action robust RL agent. [35] design an algorithm named
optimistic Nash value iteration (Nash-VI) for two-player zero-sum Markov games that is able to output an ϵ-approximate
Nash policy in Õ(SABH3/δ2) episodes of game playing. [36] design a new class of fully decentralized algorithms
V-learning, which provably learns ϵ-approximate Nash equilibrium in Õ(SAH5/δ2) episodes of two-player zero-sum
game playing. The two multi-agent RL algorithms can be used to solve the action robust optimal policy but are not
minimax optimal. They are a factor of A or H2 above the minimax lower bound.

2

3 Problem formulation

Tabular MDPs We consider a tabular episodic MDPM = (S,A, H, P,R), where S is the state space with |S| = S,
A is the action space with |A| = A, H ∈ Z+ is the number of steps in each episode, P is the transition matrix so
that Ph(·|s, a) represents the probability distribution over states if action a is taken for state s at step h ∈ [H], and
Rh : S ×A → [0, 1] represents the reward function at the step h. In this paper, the probability transition functions and
the reward functions can be different at different steps.

The agent interacts with the MDP in episodes indexed by k. Each episode k is a trajectory {sk1 , ak1 , rk1 , · · · , skH , akH , rkH}
of H states skh ∈ S, action akh ∈ A, and reward rkh ∈ [0, 1]. At each step h ∈ [H] of episode k, the agent observes the
state skh and chooses an action akh. After receiving the action, the environment generates a random reward rkh ∈ [0, 1]
derived from a distribution with mean Rh(s

k
h, a

k
h) and next state skh+1 which is drawn from the distribution Ph(·|skh, akh).

For notational simplicity, we assume that the initial states sk1 = s1 is deterministic in different episode k.

A (stochastic) Markov policy of the agent is a set of H maps π := {πh : S → ∆A}h∈[H], where ∆A denotes the
simplex overA. We use notation πh(a|s) to denote the probability of taking action a in state s under stochastic policy π
at step h. A deterministic policy is a policy that maps each state to a particular action. Therefore, when it is clear from
the context, we abuse the notation πh(s) for a deterministic policy π to denote the action a which satisfies πh(a|s) = 1.

Action Robust MDPs In the action robust case, the policy execution is not accurate and lies in some uncertainty set
centered on the agent’s policy π. Denote the actual behavior policy by π̃ where π̃ ∈ Π(π) and Π(π) is the uncertainty
set of the policy execution. Denote the actual behavior action at episode k and step h by ãkh where ãkh ∼ π̃k

h. Define the
action robust value function of a policy π as the worst-case expected accumulated reward over following any policy in
the uncertainty set Π(π) centered on a fixed policy π:

V π
h (s) = min

π̃∈Π(π)
E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′), ∀h′ > h

]
. (1)

V π
h represents the action robust value function of policy π at step h. Similarly, define the action robust Q-function of a

policy π:

Qπ
h(s, a) = min

π̃∈Π(π)
E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah = a, ah′ ∼ π̃h′(·|sh′), ∀h′ > h

]
. (2)

The goal of action robust RL is to find the optimal robust policy π∗ that maximizes the worst-case accumulated reward:
π∗ = argmaxπ V

π
1 (s),∀s ∈ S. We also denote V π∗

and Qπ∗
by V ∗ and Q∗.

Probabilistic Policy Execution Uncertain Set We follow the setting of the probabilistic action robust MDP (PR-
MDP) introduced in [7] to construct the probabilistic policy execution uncertain set. For some 0 ≤ ρ ≤ 1, the policy
execution uncertain set is defined as:

Πρ(π) := {π̃|∀s,∀h, π̃h(·|s) = (1− ρ)πh(·|s) + ρπ′
h(·|s), π′

h(·|s) ∈ ∆A} = ⊗h,sΠ
ρ
h,s(πh(·|s)) (3)

such that Πρ
h,s(πh(·|s)) = {π̃h(·|s)|π̃h(·|s) = (1− ρ)πh(·|s) + ρπ′

h(·|s), π′
h(·|s) ∈ ∆A}.

In this setting, an optimal probabilistic robust policy is optimal w.r.t. a scenario in which, with probability at most ρ,
an adversary takes control and performs the worst possible action. We call π′ as the adversarial policy. For different
agent’s policy π, the corresponding adversarial policy π′ that minimizes the cumulative reward may be different.

The probabilistic uncertain set model is closely related to the uncertainty set models defined on the total variation
distance. The uncertainty set based on distance is defined as ΠD,ρ(π) := ⊗h,sΠ

D,ρ
h,s (πh(·|s)) such that ΠD,ρ

h,s (πh(·|s)) =
{π̃h(·|s) ∈ ∆A|D(πh(·|s), π̃h(·|s)) ≤ ρ}, where D is some distance metric between two probability measures
and ρ is the radius. For any policy π̃h(·|s) ∈ Πρ

h,s(πh(·|s)), the total variation distance to the center satisfies
DTV (πh(·|s), π̃h(·|s)) = 1

2∥πh(·|s)− π̃h(·|s)∥1 ≤ ρ.

Additional Notations We set ι = log(2SAHK/δ) for δ > 0. For simplicity of notation, we treat P as a lin-
ear operator such that [PhV](s, a) := Es′∼Ph(·|s,a)V (s′), and we define two additional operators D and V as
follows: [Dπh

Q](s) := Ea∼πh(·|s)Q(s, a) and VPh
Vh+1(s, a) :=

∑
s′ Ph(s

′|s, a) (Vh+1(s
′)− [PhVh+1](s, a))

2
=

[Ph(Vh+1)
2](s, a)− ([PhVh+1](s, a))

2.

3

4 Existence of the optimal robust policy

For the standard tabular MDPs, when the state space, action space, and the horizon are all finite, there always exists an
optimal policy. In addition, if the reward functions and the transition probabilities are known to the agent, the optimal
policy can be solved by solving the Bellman optimality equation. In the following theorem, we show that the optimal
policy also always exists in action robust MDPs and can be solved by the action robust Bellman optimality equation.

Theorem 1 If the uncertainty set of the policy execution has the form in (3), the following perfect duality holds for all
s ∈ S and all h ∈ [H]:

max
π

min
π̃∈Πρ(π)

E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]

= min
π̃∈Πρ(π)

max
π

E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]
.

(4)

There always exists a deterministic optimal robust policy π∗. The problem can be solved via the induction of the action
robust Bellman optimality equation on h = H, · · · , 1. The action robust Bellman equation and the action robust
Bellman optimality equation are:

V π
h (s) = (1− ρ)[Dπh

Qπ
h](s) + ρmin

a∈A
Qπ

h(s, a)

Qπ
h(s, a) = Rh(s, a) + [PhV

π
h+1](s, a)

V π
H+1(s) = 0, ∀s ∈ S

(5)

V ∗
h (s) = (1− ρ)max

a∈A
Q∗

h(s, a) + ρmin
b∈A

Q∗
h(s, b)

Q∗
h(s, a) = Rh(s, a) + [PhV

∗
h+1](s, a)

V ∗
H+1(s) = 0, ∀s ∈ S

. (6)

Similar result of the perfect duality was show in [7]. They considered a PR-MDP as a two-player zero-sum Markov
game and solving the optimal probabilistic robust policy can be equivalently viewed as solving the equilibrium value
of a two-player zero-sum Markov game. We define Cπ,π′,ρ

h (s) := E
[∑H

h′=h Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)
]
.

The perfect duality of the control problems in (4) is equivalent to maxπ minπ′ Cπ,π′,ρ
h (s) = minπ′ maxπ C

π,π′,ρ
h (s).

We provide an alternate proof in Appendix A based on the robust Bellman equation.

5 Algorithm and main results

In this section, we introduce the proposed Action Robust Reinforcement Learning with Certificates (ARRLC) algorithm
and provides its theoretical guarantee. The pseudo code is listed in Algorithm 1. Here, we highlight the main idea
of our algorithm. Algorithm 1 trains the agent in a clean (simulation) environment and learns a policy that performs
well when applied to a perturbed environment with probabilistic policy execution uncertainty. To simulate the action
perturbation, Algorithm 1 chooses an adversarial action with probability ρ. To learn the agent’s optimal policy and the
corresponding adversarial policy, Algorithm 1 computes an optimistic estimate Q of Q∗ and a pessimistic estimate Q

of Qπk

. Algorithm 1 uses the optimistic estimates to explore the possible optimal policy π and uses the pessimistic
estimates to explore the possible adversarial policy π. As shown later in Lemma 2, V ≥ V ∗ ≥ V π ≥ V holds with
high probabilities. The optimistic and pessimistic estimates V and V can provide policy certificates, which bounds
the cumulative rewards of the return policy πk and V − V bounds the sub-optimality of the return policy πk with
high probabilities. The policy certificates can give us some insights about the performance of πk in the perturbed
environment with probabilistic policy execution uncertainty.

5.1 Algorithm description

We now describe the proposed ARRLC algorithm in more details. In each episode, the ARRLC algorithm can be
decomposed into two parts.

• Line 3-11 (Sample trajectory and update the model estimate): Simulates the action robust MDP, executes the
behavior policy π̃, collects samples, and updates the estimate of the reward and the transition.

4

• Line 16-25 (Adversarial planning from the estimated model): Performs value iteration with bonus to estimate
the robust value functions using the empirical estimate of the transition P̂ , computes a new policy π which
is optimal respect to the estimated robust value functions, and computes a new optimal adversarial policy π
respect to the agent’s policy π.

At a high-level, this two-phase strategy is standard in the majority of model-based RL algorithms [28, 31]. Algorithm 1
shares similar structure with ORLC (Optimistic Reinforcement Learning with Certificates) in [31] but has some
significant differences in line 5-6 and line 18-23. The first main difference is that the ARRLC algorithm simulates the
probabilistic policy execution uncertainty by choosing an adversarial action with probability ρ. The adversarial policy
and the adversarial action are computed by the ARRLC algorithm. The second main difference is that the ARRLC
algorithm simultaneously plans the agent policy π and the adversarial policy π by the action robust Bellman optimality
equation.

These two main difference brings two main challenges in the design and analysis of our algorithm.

(1) The ARRLC algorithm simultaneously plans the agent policy and the adversarial policy. However the planned
adversarial policy π is not necessarily the true optimal adversary policy towards the agent policy π because of the
estimation error of the value functions. We carefully design the bonus items and the update role of the value functions
so that V h(s) ≥ V ∗

h (s) ≥ V π
h (s) ≥ V h(s) and Qh(s, a) ≥ Q∗

h(s, a) ≥ Qπ
h(s, a) ≥ Q

h
(s, a) hold for all s and a.

(2) A crucial step in many UCB-type algorithms based on Bernstein inequality is bounding the sum of variance
of estimated value function across the planning horizon. The behavior policies in these UCB-type algorithms are
deterministic. However, the behavior policy in our ARRLC algorithm is not deterministic due to the simulation of the
adversary’s behavior. The total variance is the weighted sum of the sum of variance of estimated value function across
two trajectories. Even if action π(skh) or π(skh) is not sampled at state skh, it counts in the total variance.

5.2 Theoretical guarantee

We define the cumulative regret of the output policy πk at each episodes k as Regret(K) :=
∑K

k=1(V
∗
1 (s

k
1)−V πk

1 (sk1)).

Theorem 2 For any δ ∈ (0, 1], letting ι = log(2SAHK/δ), then with probability at least 1− δ, Algorithm 1 achieves:

• V ∗
1 (s1)− V πout

1 (s1) ≤ ϵ, if the number of episodes K ≥ Ω(SAH3ι2/ϵ2 + S2AH3ι2/ϵ).

• Regret(K) =
∑K

k=1(V
∗
1 (s

k
1)− V πk

1 (sk1)) ≤ O(
√
SAH3Kι+ S2AH3ι2).

For small ϵ ≤ H/S, the sample complexity scales as O(SAH3ι2/ϵ2). For the case with a large number of episodes
K ≥ S3AH3ι, the regret scales as O(

√
SAH3Kι). For the standard MDPs, the information-theoretic sample

complexity lower bound is Ω(SAH3/ϵ2) provided in [33] and the regret lower bound is Ω(
√
SAH3K) provided in

[30]. When ρ = 0, the action robust MDPs is equivalent to the standard MDPs. Thus, the information-theoretic sample
complexity lower bound and the regret lower bound of the action robust MDPs should have same dependency on S, A,
H , K or ϵ. The lower bounds show the optimality of our algorithm up to logarithmic factors.

6 Proof sketch

In this section, we provide sketch of the proof, which will highlight our the main ideas of our proof. First, we will show
that V h(s) ≥ V ∗

h (s) ≥ V π
h (s) ≥ V h(s) hold for all s and a. Then, the regret can be bounded by V 1 − V 1 and then

be divided by four items, each of which can then be bounded separately. The full proof can be found in the appendix
contained in the supplementary material.

We first introduce a few notations. We use Q
k

h,V
k

h,Qk

h
,V k

h, Nk
h , P̂ k

h ,r̂kh and θkh to denote the values of Qh,V h,Q
h

,V h,
max{Nh, 1}, P̂h, rh and θh in the beginning of the k-th episode in Algorithm 1.

6.1 Proof of monotonicity

We define ER to be the event where∣∣r̂kh(s, a)−Rh(s, a)
∣∣ ≤√2r̂kh(s, a)ι

Nk
h (s, a)

+
7ι

3(Nk
h (s, a))

(7)

5

Algorithm 1: ARRLC (Action Robust Reinforcement Learning with Certificates)

1: Initialize V h(s) = H − h+ 1, Qh(s, a) = H − h+ 1, V h(s) = 0, Q
h
(s, a) = 0, r̂h(s, a), Nh(s, a) = 0 and

Nh(s, a, s
′) = 0 for all state s ∈ S, all action a ∈ A and all step h ∈ [H]. V H+1(s) = V H+1(s) = 0 and

QH+1(s, a) = Q
H+1

(s, a) = 0 for all s and a. ∆ = H .
2: for episode k = 1, 2, . . . ,K do
3: for step h = 1, 2, . . . ,H do
4: Observe skh.
5: Set πk

h(s) = argmaxa Qh(s, a) , πk
h(s) = argmina Qh

(s, a), π̃k
h = (1− ρ)πk

h + ρπk
h.

6: Take action akh ∼ π̃k
h(·|skh).

7: Receive reward rkh and observe skh+1.
8: Set Nh(s

k
h, a

k
h)← Nh(s

k
h, a

k
h) + 1, Nh(s

k
h, a

k
h, s

k
h+1)← Nh(s

k
h, a

k
h, s

k
h+1) + 1.

9: Set r̂kh(s
k
h, a

k
h)← r̂kh(s

k
h, a

k
h) + (rkh − r̂kh(s

k
h, a

k
h))/Nh(s

k
h, a

k
h).

10: Set P̂h(·|skh, akh) = Nh(s
k
h, a

k
h, ·)/Nh(s

k
h, a

k
h).

11: end for
12: Output policy πk with certificates Ik = [V 1(s

k
1), V 1(s

k
1)] and ϵk = |Ik| .

13: if ϵk < ∆ then
14: ∆← ϵk and πout ← πk.
15: end if
16: for step h = H,H − 1, . . . , 1 do
17: for each (s, a) ∈ S ×A with Nh(s, a) > 0 do

18: Set θh(s, a) =

√
2VP̂h

[(V h+1+V h+1)/2](s,a)ι

Nh(s,a)
+
√

2r̂h(s,a)ι
Nh(s,a)

+
P̂h(V h+1−V h+1)(s,a)

H + (24H2+7H+7)ι
3Nh(s,a)

,

19: Qh(s, a)← min{H − h+ 1, r̂h(s, a) + P̂hV h+1(s, a) + θh(s, a)},
20: Q

h
(s, a)← max{0, r̂h(s, a) + P̂hV h+1(s, a)− θh(s, a)},

21: πk+1
h (s) = argmaxa Qh(s, a) , πk+1

h (s) = argmina Qh
(s, a),

22: V h(s)← (1− ρ)Qh(s, π
k+1
h (s)) + ρQh(s, π

k+1
h (s)),

23: V h(s)← (1− ρ)Q
h
(s, πk+1

h (s)) + ρQ
h
(s, πk+1

h (s)).
24: end for
25: end for
26: end for
27: return πout

holds for all (s, a, h, k) ∈ S ×A× [H]× [K]. We also define EPV to be the event where

∣∣∣(P̂ k
h − Ph)V

∗
h+1(s, a)

∣∣∣ ≤
√

2VP̂k
h
V ∗
h+1(s, a)ι

Nk
h (s, a)

+
7Hι

3(Nk
h (s, a))

(8)

∣∣∣(P̂ k
h − Ph)V

πk

h+1(s, a)
∣∣∣ ≤

√√√√2VP̂k
h
V πk

h+1(s, a)ι

Nk
h (s, a)

+
7Hι

3Nk
h (s, a)

(9)

holds for all (s, a, h, k) ∈ S ×A× [H]× [K].

Event ER means that the estimations of all reward functions stay in certain neighborhood of the true values. Event EPV

represents that the estimation of the value functions at the next step stay in some intervals. The following lemma shows
ER and EPV hold with high probability. The analysis will be done assuming the successful event ER ∩ EPV holds in
the rest of this section.

Lemma 1 P(ER ∩ EPV) ≥ 1− 3δ.

Lemma 2 Conditioned on ER ∩ EPV , V
k

h(s) ≥ V ∗
h (s) ≥ V πk

h (s) ≥ V k
h(s) and Q

k

h(s, a) ≥ Q∗
h(s, a) ≥ Qπk

h (s, a) ≥
Qk

h
(s, a) for all (s, a, h, k) ∈ S ×A× [H]× [K].

6

6.2 Regret analysis

We decompose the regret and analyze the different terms. Set Θk
h(s, a) =

√
8VPh

C
πk∗,πk,ρ
h+1 (s,a)ι

Nk
h (s,a)

+
√

32
Nk

h (s,a)
+ 46

√
SH4ι

Nk
h (s,a)

,

where πk∗ is the optimal policy towards the adversary policy πk with πk∗
h (s) = argmaxπ C

π,πk,ρ
h (s). We define the

cumulative regret of the output policy πk at each episodes k as Regret(K) :=
∑K

k=1(V
∗
1 (s

k
1)− V πk

1 (sk1)). Let M1 =∑K
k=1

∑H
h=1[Dπ̃k

h
P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h) − P̂ k

h (V
k

h+1 − V k
h+1)(s

k
h, a

k
h)], M2 =

∑K
k=1

∑H
h=1

1
H [Dπ̃k

h
Ph(V

k

h+1 −

V k
h+1)(s

k
h)−Ph(V

k

h+1−V k
h+1)(s

k
h, a

k
h)], M3 =

∑K
k=1

∑H
h=1(P

k
h (V

k

h+1−V k
h+1)(s

k
h, a

k
h)−(V

k

h+1−V k
h+1)(s

k
h+1))

and M4 =
∑K

k=1

∑H
h=1[

(SH+SH2)ι

Nk
h (skh,a

k
h)

+ Dπ̃k
h
Θk

h(s
k
h)]. Here M1 and M2 are the cumulative sample error from the

random choices of the adversarial policy or agent’s policy. M3 is the cumulative sample error from the randomness of
Monte Carlo sampling of the next state. M4 is the cumulative error from the bonus item θ. Lemma 3 shows that the
regret can be bounded by these four terms.

Lemma 3 With probability at least 1− (S + 5)δ,

Regret(K) ≤
K∑

k=1

(V
k

1(s
k
1)− V k

1(s
k
1)) ≤ 21(M1 +M2 +M3 +M4). (10)

We now bound each of these four items separately.

Lemma 4 With probability at least 1− δ, |M1| ≤ H
√
2HKι.

Lemma 5 With probability at least 1− δ, |M2| ≤
√
2HKι.

Lemma 6 With probability at least 1− δ, |M3| ≤ H
√
2HKι.

Lemma 7 With probability at least 1 − 2δ, |M4| ≤ 2S2AH3ι2 + 8
√
SAH2Kι + 46S

3
2AH3ι2 +

√
24SAH3Kι +

6
√
SAH5ι.

Putting All Together By Lemmas 3, 4, 5, 6, and 7, we conclude that, with probability 1− (S + 10)δ,

Regret(K) ≤O(
√
H3Kι+

√
SAH2Kι+

√
SAH3Kι+ S2AH3ι2 +

√
SAH5ι)

=O(
√
SAH3Kι+ S2AH3ι2).

(11)

By rescaling δ, log(2SAHK
δ/(S+10)) ≤ cι for some constant c and we finish the proof of regret. As

∑K
k=1(V

k

1(s
k
1) −

V k
1(s

k
1)) ≤ O(

√
SAH3Kι+S2AH3ι2), we have that V ∗

1 (s1)−V πout

1 (s1) ≤ mink V
k

1(s
k
1)−V

k
1(s

k
1) ≤ O(

√
SAH3ι
K +

S2AH3ι2

K) and we finish the proof of sample complexity.

7 Model-free method

In this section, we develop a model-free algorithm and analyze its theoretical guarantee. We present the proposed Action
Robust Q-learning with UCB-Hoeffding (AR-UCBH) algorithm show in Algorithm 2. Here, we highlight the main
idea of Algorithm 2. Algorithm 2 follows the same idea of Algorithm 1, which trains the agent in a clean (simulation)
environment and learns a policy that performs well when applied to a perturbed environment with probabilistic policy
execution uncertainty. To simulate the action perturbation, Algorithm 2 chooses an adversarial action with probability
ρ. To learn the agent’s optimal policy and the corresponding adversarial policy, Algorithm 2 computes an optimistic
estimate Q of Q∗ and a pessimistic estimate Q of Qπk

. Algorithm 2 uses the optimistic estimates to explore the possible
optimal policy π and uses the pessimistic estimates to explore the possible adversarial policy π. The difference is that
Algorithm 2 use a model-free method to update Q and V values.

Here, we highlight the challenges of the model-free planning compared with the model-based planing. In the model-
based planning, we performs value iteration and the Q values, V values, agent policy π and adversarial policy π are
updated on all (s, a). However, in the model-free method, the Q values, V values are updated only on (skh, a

k
h) which

are the samples on the trajectories. Compared with the model-based planning, the model-free planning is slower and

7

Algorithm 2: Action Robust Q-learning with UCB-Hoeffding (AR-UCBH)

1: Set αt =
H+1
H+t . Initialize V h(s) = H − h+ 1, Qh(s, a) = H − h+ 1, V h(s) = 0, Q

h
(s, a) = 0, r̂h(s, a),

Nh(s, a) = 0 for all state s ∈ S, all action a ∈ A and all step h ∈ [H]. V H+1(s) = V H+1(s) = 0 and
QH+1(s, a) = Q

H+1
(s, a) = 0 for all s and a. ∆ = H . Initial policy π1

h(a|s) and π1
h(a|s) = 1/A for all state s,

action a and all step h ∈ [H].
2: for episode k = 1, 2, . . . ,K do
3: for step h = 1, 2, . . . ,H do
4: Observe skh.
5: Set akh = argmaxa Qh(s

k
h, a) , akh = argmina Qh

(skh, a), π̃
k
h(a

k
h|skh) = 1− ρ and π̃k

h(a
k
h|skh) = ρ.

6: Take action akh ∼ π̃k
h(·|skh).

7: Receive reward rkh and observe skh+1.
8: Set t = Nh(s

k
h, a

k
h)← Nh(s

k
h, a

k
h) + 1; bt =

√
H3ι/t.

9: Qh(s
k
h, a

k
h)← (1− αt)Qh(s

k
h, a

k
h) + αt(r

k
h + V h+1(s

k
h+1) + bt),

10: Q
h
(skh, a

k
h)← (1− αt)Qh

(skh, a
k
h) + αt(r

k
h + V h+1(s

k
h+1)− bt).

11: Set πk+1
h (skh) = argmaxa Qh(s

k
h, a), π

k+1
h (skh) = argmina Qh

(sk+1
h , a).

12: V h(s
k
h)← min{V h(s

k
h), (1− ρ)Qh(s

k
h, π

k+1
h (skh)) + ρQh(s

k
h, π

k+1
h (skh))}.

13: V h(s
k
h)← max{V h(s

k
h), (1− ρ)Q

h
(skh, π

k+1
h (skh)) + ρQ

h
(skh, π

k+1
h (skh))}.

14: if V h(s
k
h) > (1− ρ)Q

h
(skh, π

k+1
h (skh)) + ρQ

h
(skh, π

k+1
h (skh)) then

15: πk+1
h = πk

h.
16: end if
17: end for
18: Output policy πk+1 with certificates Ik+1 = [V 1(s

k
1), V 1(s

k
1)] and ϵk+1 = |Ik+1|.

19: end for
20: return πk+1

less stable. We need to update the output policy carefully. In line 14-16, Algorithm 2 does not update the output policy
when the lower bound on the value function of the new policy does not improve. By this, the output policies are stably
updated.

We provide the regret and sample complexity bounds of Algorithm 2 in the following:

Theorem 3 For any δ ∈ (0, 1], letting ι = log(2SABHK/δ), then with probability at least 1 − δ, Algorithm 2
achieves:

• V ∗
1 (s1)− V πout

1 (s1) ≤ ϵ, if the number of episodes K ≥ Ω(SAH5ι/ϵ2 + SAH2/ϵ).

• Regret(K) =
∑K

k=1(V
∗
1 (s

k
1)− V πk

1 (sk1)) ≤ O(
√
SAH5Kι+ SAH2).

The detailed proof is provided in Appendix C

8 Simulation results

We use OpenAI gym framework [37], and consider two different problems: Cliff Walking, a toy text environment, and
Inverted Pendulum, a control environment with the MuJoCo [38] physics simulator. We set H = 100. To demonstrate
the robustness, the policy is learned in a clean environment, and is then tested on the perturbed environment. Specifically,
during the testing, we set a probability p such that after the agent takes an action, with probability p, the action is
uniformly randomly choosen or choosen by a fixed adversarial policy. A Monte-Carlo method is used to evaluate the
accumulated reward of the learned policy on the perturbed environment. We take the average over 100 trajectories.
Training of ARRLC on CliffWalking-v0 and InvertedPendulum-v4 respectively cost roughly 5 seconds and 22 seconds
per 100 episodes on an i9-9880H CPU core. In Figure 3 and Figure 4, "fix" represents that the action is perturbed by a
fixed adversarial policy during the testing, "random" represents that the action is randomly perturbed during the testing,
p is the action perturbation probability.

8

Figure 1: Inverted pendulum environment. Figure 2: Cliff walking environment.

Inverted pendulum The inverted pendulum experiment as shown in Figure 1 is a classic control problem in RL. An
inverted pendulum is attached by a pivot point to a cart, which is restricted to linear movement in a plane. The cart can
be pushed left or right, and the goal is to balance the inverted pendulum on the top of the cart by applying forces on the
cart. A reward of +1 is awarded for each time step that the inverted pendulum stand upright within a certain angle limit.
The fixed adversarial policy in the inverted pendulum environment is a force of 0.5 N in the left direction.

Cliff walking The cliff walking experiment as shown in Figure 2 is a classic scenario proposed in [39]. The game
starts with the player at location [3, 0] of the 4 × 12 grid world with the goal located at [3, 11]. A cliff runs along
[3, 1− 10]. If the player moves to a cliff location, it returns to the start location and receives a reward of −100. For
every move which does not lead into the cliff, the agent receives a reward of −1. The player makes moves until they
reach the goal. The fixed adversarial policy in the cliff walking environment is walking a step to the bottom.

We compare our algorithm with the non-robust RL algorithm, which is ORLC (Optimistic Reinforcement Learning
with Certificates) in [31]. We set ρ = 0.2 for our algorithm, which is the uncertain parameter used during the training.
In Figure 3, we plot the accumulated reward of both algorithms under different p and perturbations. It can be seen
that overall our ARRLC algorithm achieves a much higher reward than the ORLC algorithm. This demonstrates the
robustness of our ARRLC algorithm to policy execution uncertainty.

(a) p=0.1, fix (b) p=0.2, fix (c) p=0.1, random (d) p=0.2, random

(e) p=0.1, fix (f) p=0.2, fix (g) p=0.1, random (h) p=0.2, random

Figure 3: ARRLC v.s. ORLC.

We compare our algorithm with the robust TD algorithm in [8], which has no theoretical guarantee on sample complexity
or regret. We set ρ = 0.2. In Figure 4, we plot the accumulated reward of both algorithms under different p and
perturbations using a base-10 logarithmic scale on the x-axis and a linear scale on the y-axis. It can be seen that our
ARRLC algorithm converges faster than the robust TD algorithm. This demonstrates the efficiency of our ARRLC
algorithm to learn optimal policy under policy execution uncertainty.

9 Conclusion

In this paper, we have developed a novel approach for solving action robust RL problems with probabilistic policy
execution uncertainty. We have theoretically proved the sample complexity bound and the regret bound of the algorithms.

9

(a) p=0.1, fix (b) p=0.2, fix (c) p=0.1, random (d) p=0.2, random

(e) p=0.1, fix (f) p=0.2, fix (g) p=0.1, random (h) p=0.2, random

Figure 4: ARRLC v.s. Robust TD

The upper bound of the sample complexity and the regret of proposed ARRLC algorithm match the lower bound up to
logarithmic factors, which shows the minimax optimality of our algorithm. Moreover, we have carried out numerical
experiments to validate our algorithm’s robustness and efficiency, revealing that ARRLC surpasses non-robust algorithms
and converges more rapidly than the robust TD algorithm when faced with action perturbations.

References

[1] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang. Deep reinforcement learning for page-wise
recommendations. In Proceedings of the 12th ACM Conference on Recommender Systems, page 95–103. ACM, 2018.

[2] Matthew O’ Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake, and John C Duchi. Scalable end-to-end autonomous
vehicle testing via rare-event simulation. In Advances in Neural Information Processing Systems, volume 31, 2018.

[3] Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuqing Yang, Bowen Xiao, and Christina Dan Wang. Finrl: A
deep reinforcement learning library for automated stock trading in quantitative finance. Deep RL Workshop, NeurIPS 2020,
2020.

[4] MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. Reinforcement learning for solving the
vehicle routing problem. In Advances in Neural Information Processing Systems, volume 31, 2018.

[5] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh. Robust deep reinforcement
learning against adversarial perturbations on state observations. Advances in Neural Information Processing Systems, 33:21024–
21037, 2020.

[6] Yanchao Sun, Ruijie Zheng, Yongyuan Liang, and Furong Huang. Who is the strongest enemy? towards optimal and efficient
evasion attacks in deep RL. In International Conference on Learning Representations, 2022.

[7] Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and applications in continuous control.
In International Conference on Machine Learning, pages 6215–6224. PMLR, 2019.

[8] Richard Klima, Daan Bloembergen, Michael Kaisers, and Karl Tuyls. Robust temporal difference learning for critical domains.
In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, page
350–358, 2019.

[9] Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain transition matrices. Operations
Research, 53(5):780–798, 2005.

[10] Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty. Advances in Neural Information
Processing Systems, 34:7193–7206, 2021.

[11] Yunhan Huang and Quanyan Zhu. Deceptive reinforcement learning under adversarial manipulations on cost signals. In
Decision and Game Theory for Security: 10th International Conference, GameSec 2019, Stockholm, Sweden, October
30–November 1, 2019, Proceedings 10, pages 217–237. Springer, 2019.

[12] Erwan Lecarpentier and Emmanuel Rachelson. Non-stationary markov decision processes, a worst-case approach using
model-based reinforcement learning. Advances in neural information processing systems, 32, 2019.

10

[13] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

[14] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models
resistant to adversarial attacks. In International Conference on Learning Representations, 2018.

[15] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforcement learning. In
International Conference on Machine Learning, pages 2817–2826, 2017.

[16] Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Sample complexity of asynchronous q-learning: Sharper
analysis and variance reduction. Advances in neural information processing systems, 33:7031–7043, 2020.

[17] Jiafan He, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal reinforcement learning for discounted mdps. Advances
in Neural Information Processing Systems, 34:22288–22300, 2021.

[18] Kaiyang Guo, Shao Yunfeng, and Yanhui Geng. Model-based offline reinforcement learning with pessimism-modulated
dynamics belief. Advances in Neural Information Processing Systems, 35:449–461, 2022.

[19] Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning with near-optimal sample
complexity. arXiv preprint arXiv:2208.05767, 2022.

[20] Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved sample complexity bounds for distributionally robust reinforce-
ment learning. In International Conference on Artificial Intelligence and Statistics, pages 9728–9754. PMLR, 2023.

[21] Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning with a generative model. In
International Conference on Artificial Intelligence and Statistics, pages 9582–9602. PMLR, 2022.

[22] Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. Adaptive reward-poisoning attacks against reinforcement learning.
In Proceedings of the 37th International Conference on Machine Learning, volume 119, pages 11225–11234, 2020.

[23] Guanlin Liu and Lifeng Lai. Provably efficient black-box action poisoning attacks against reinforcement learning. Advances in
Neural Information Processing Systems, 34, 2021.

[24] Yanchao Sun, Da Huo, and Furong Huang. Vulnerability-aware poisoning mechanism for online rl with unknown dynamics. In
International Conference on Learning Representations, 2021.

[25] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Machine learning, 49:209–232,
2002.

[26] Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac model-free reinforcement learning.
In Proceedings of the 23rd international conference on Machine learning, pages 881–888, 2006.

[27] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement learning. Advances in neural
information processing systems, 21, 2008.

[28] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning. In
International Conference on Machine Learning, pages 263–272, 2017.

[29] Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac bounds for episodic reinforcement
learning. Advances in Neural Information Processing Systems, 30, 2017.

[30] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient? Advances in neural
information processing systems, 31, 2018.

[31] Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards accountable reinforcement learning.
In International Conference on Machine Learning, pages 1507–1516. PMLR, 2019.

[32] Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds for tabular mdps. Advances in Neural
Information Processing Systems, 32, 2019.

[33] Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learningvia reference-advantage
decomposition. Advances in Neural Information Processing Systems, 33:15198–15207, 2020.

[34] Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than bandits? a near-optimal algorithm
escaping the curse of horizon. In Conference on Learning Theory, pages 4528–4531. PMLR, 2021.

[35] Qinghua Liu, Tiancheng Yu, Yu Bai, and Chi Jin. A sharp analysis of model-based reinforcement learning with self-play. In
International Conference on Machine Learning, pages 7001–7010. PMLR, 2021.

[36] Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient, decentralized algorithm for multiagent
rl. arXiv preprint arXiv:2110.14555, 2021.

[37] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.

[38] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ
international conference on intelligent robots and systems, pages 5026–5033. IEEE, 2012.

[39] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[40] Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance penalization. arXiv preprint
arXiv:0907.3740, 2009.

11

[41] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger. Inequalities for the l1 deviation
of the empirical distribution. Hewlett-Packard Labs, Tech. Rep, 2003.

12

A Proof of Theorem 1

The uncertainty set of the policy execution has the form in:

Πρ(π) := {π̃|∀s, π̃h(·|s) = (1− ρ)π(·|s) + ρπ′
h(·|s), π′

h(·|s) ∈ ∆A}. (12)

We define

Cπ,π′,ρ
h (s) := E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]

Dπ,π′,ρ
h (s, a) := E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah = a, ah′ ∼ π̃h′(·|sh′)

]
.

Robust Bellman Equation First we prove the action robust Bellman equation holds for all policy π, state s action a
and step h. From the definition of the robust value function in (1), we have V π

H+1(s) = 0, ∀s ∈ S.

We prove the robust Bellman equation by building a policy π−. Here, policy π− is the optimal adversarial policy
towards the policy π.

At step H , we set π−
H(s) = argmina∈A RH(s, a). We have

V π
H(s) = min

π′
Cπ,π′,ρ

H (s)

= (1− ρ)[DπH
RH](s) + ρmin

π′
[Dπ′

H
RH](s)

= (1− ρ)[DπH
Qπ

H](s) + ρmin
a∈A

Qπ
H(s, a) = Cπ,π−,ρ

H (s),

(13)

as VH+1 = 0.

The robust Bellman equation holds at step H and minπ′
∑

s w(s)C
π,π′,ρ
H (s) =

∑
s w(s)minπ′ Cπ,π′,ρ

H (s) =∑
s w(s)C

π,π−,ρ
H (s) for any state s and any weighted function w : S → ∆S .

Suppose the robust Bellman equation holds at step h+1 and minπ′
∑

s w(s)C
π,π′,ρ
h+1 (s) =

∑
s w(s)minπ′ Cπ,π′,ρ

h+1 (s) =∑
s w(s)C

π,π−,ρ
h+1 (s) for any state s and any weighted function w : S → ∆S .

Now we prove the robust Bellman equation holds at step h. From the definition of the robust Q-function in (2) and the
form of uncertainty set, we have

Qπ
h(s, a) = min

π̃∈Π(π)
E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah = a, ah′ ∼ π̃h′(·|sh′)

]
=min

π′
Dπ,π′,ρ

h (s, a)

=Rh(s, a) + min
π′
Es′∼Ph(·|s,a)C

π,π′,ρ
h+1 (s)

=Rh(s, a) +Es′∼Ph(·|s,a) min
π′

Cπ,π′,ρ
h+1 (s)

=Rh(s, a) + [PhV
π
h+1](s, a).

(14)

We also have that Qπ
h(s, a) = Dπ,π−,ρ

h (s, a).

13

Recall that a (stochastic) Markov policy is a set of H maps π := {πh : S → ∆A}h∈[H]. From the definition of the
robust value function in (1) and the form of uncertainty set, we have

V π
h (s) = min

π̃∈Π(π)
E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]
=min

π′
Cπ,π′,ρ

h (s)

=min
π′

h

min
{π′

h′}H
h′=h+1

Cπ,π′,ρ
h (s)

≥(1− ρ) min
{π′

h′}H
h′=h+1

Ea∼πh(·|s)D
π,π′,ρ
h (s, a) + ρmin

π′
h

min
{π′

h′}H
h′=h+1

Ea∼π′
h(·|s)D

π,π′,ρ
h (s, a)

≥(1− ρ)Ea∼πh(·|s) min
{π′

h′}H
h′=h+1

Dπ,π′,ρ
h (s, a) + ρmin

π′
h

Ea∼π′
h(·|s) min

{π′
h′}H

h′=h+1

Dπ,π′,ρ
h (s, a)

=(1− ρ)[Dπh
Qπ

h](s) + ρmin
a∈A

Qπ
h(s, a).

(15)

We set π−
h (s) = argmina∈A Qπ

h(s, a) = argmina∈A Dπ,π−,ρ
h (s, a).

At step h, we have

V π
h (s) ≤Cπ,π−,ρ

h (s)

=(1− ρ)[Dπh
Dπ,π−,ρ

h](s) + ρmin
a∈A

Dπ,π−,ρ
h (s, a)

=(1− ρ)[Dπh
Qπ

h](s) + ρmin
a∈A

Qπ
h(s, a),

(16)

where the last equation comes from the robust Bellman equation at step h+ 1 and

Dπ,π−,ρ
h (s, a) = Rh(s, a) + [PhC

π,π−,ρ
h+1](s, a) = Rh(s, a) + [PhV

π
h+1](s, a).

Thus, the robust Bellman equation holds at step h.

Then, we prove the commutability of the expectation and the minimization operations at step h. For any weighted
function w, we have minπ′

∑
s w(s)C

π,π′,ρ
h (s) ≥

∑
s w(s)minπ′ Cπ,π′,ρ

h (s). Then, minπ′
∑

s w(s)C
π,π′,ρ
h (s) ≤∑

s w(s)C
π,π−,ρ
h (s) =

∑
s w(s)minπ′ Cπ,π′,ρ

h (s).

By induction on h = H, · · · , 1, we prove the robust Bellman equation.

Perfect Duality and Robust Bellman Optimality Equation We now prove that the perfect duality holds and can be
solved by the optimal robust Bellman equation.

The control problem in the LHS of (4) is equivalent to

max
π

min
π̃∈Πρ(π)

E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]
= max

π
min
π′

Cπ,π′,ρ
h (s). (17)

The control problem in the RHS of (4) is equivalent to

min
π̃∈Πρ(π)

max
π

E

[
H∑

h′=h

Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]
= min

π′
max
π

Cπ,π′,ρ
h (s). (18)

For step H , we have Cπ,π′,ρ
H (s) = [D((1−ρ)π+ρπ′)H

RH](s) = (1− ρ)[DπH
RH](s) + ρ[Dπ′

H
RH](s). Thus, we have

max
π

min
π′

Cπ,π′,ρ
H (s) =(1− ρ)max

π
[DπH

RH](s) + ρmin
π′

[Dπ′
H
RH](s)

=(1− ρ)max
a∈A

RH(s, a) + ρmin
b∈A

RH(s, b),
(19)

and

min
π′

max
π

Cπ,π′,ρ
H (s) =(1− ρ)max

π
[DπH

RH](s) + ρmin
π′

[Dπ′
H
RH](s)

=(1− ρ)max
a∈A

RH(s, a) + ρmin
b∈A

RH(s, b).
(20)

14

At step H , the perfect duality holds for all s and there always exists an optimal robust policy π∗
H(s) =

argmaxa∈A Q∗
H(s, a) = argmaxa∈A RH(s, a) and its corresponding optimal adversarial policy π−

H(s) =
argmina∈A RH(s, a) which are deterministic. The action robust Bellman optimality equation holds at step H for all
state s and action a.

In addition, maxπ minπ′
∑

s w(s)C
π,π′,ρ
H (s) =

∑
s w(s)maxπ minπ′ Cπ,π′,ρ

H (s) for any weighted function w : S →
∆S . This can be shown as

max
π

min
π′

∑
s∈S

w(s)Cπ,π′,ρ
H (s)

=(1− ρ)max
π

∑
s∈S

w(s)[DπH
RH](s) + ρmin

π′

∑
s∈S

w(s)[Dπ′
H
RH](s)

=(1− ρ)
∑
s∈S

w(s)max
a∈A

RH(s, a) + ρ
∑
s∈S

w(s)min
b∈A

RH(s, b).

(21)

Suppose that at steps from h+ 1 to H , the perfect duality holds for all s, the action robust Bellman optimality equation
holds for all state s and action a, there always exists an optimal robust policy π∗

h′ = argmaxa∈A Q∗
h′(s, a) and its

corresponding optimal adversarial policy π−
h′(s) = argmina∈A Q∗

h′(s, a), ∀h′ ≥ h+ 1, which is deterministic , and
maxπ minπ′

∑
s w(s)C

π,π′,ρ
h′ (s) =

∑
s w(s)maxπ minπ′ Cπ,π′,ρ

h′ (s) for any state s, any weighted function w : S →
∆S and any h′ ≥ h+ 1. We have V ∗

h′(s) = V π∗

h′ (s) = Cπ∗,π−,ρ
h′ (s) and Q∗

h′(s, a) = Qπ∗

h′ (s, a) = Dπ∗,π−,ρ
h′ (s, a) for

any state s and any h′ ≥ h+ 1.

We first prove that the robust Bellman optimality equation holds at step h.

We have

Q∗
h(s, a) = max

π
min
π′

Dπ,π′,ρ
h (s, a)

= max
π

min
π′

(Rh(s, a) + [PhC
π,π′,ρ
h+1](s, a))

= Rh(s, a) + [Ph(max
π

min
π′

Cπ,π′,ρ
h+1)](s, a)

= Rh(s, a) + [PhV
∗
h+1](s, a).

(22)

and also Q∗
h(s, a) = Qπ∗

h (s, a) = Dπ∗,π−,ρ
h (s, a).

From the robust Bellman equation, we have

max
π

V π
h (s) =max

π

(
(1− ρ)[Dπh

Qπ
h](s) + ρmin

a∈A
Qπ

h(s, a)

)
≤(1− ρ)max

πh

max
{πh}H

h′=h+1

[Dπh
Qπ

h](s) + ρ max
{πh}H

h′=h+1

min
a∈A

Qπ
h(s, a)

≤(1− ρ)max
πh

max
{πh}H

h′=h+1

[Dπh
Qπ

h](s) + ρmin
a∈A

max
{πh}H

h′=h+1

Qπ
h(s, a)

≤(1− ρ)max
πh

[Dπh
Q∗

h](s) + ρmin
a∈A

Q∗
h(s, a)

=(1− ρ)max
a∈A

Q∗
h(s, a) + ρmin

a∈A
Q∗

h(s, a).

(23)

We set π∗
h(s) = maxa∈A Q∗

h(s, a). According to the robust bellman equation, we have

max
π

V π
h (s) ≥ V π∗

h (s) = (1− ρ)[Dπ∗
h
Qπ∗

h](s) + ρmin
a∈A

Qπ∗

h (s, a)

= (1− ρ)max
a∈A

Qπ∗

h (s, a) + ρmin
a∈A

Qπ∗

h (s, a)

= (1− ρ)max
a∈A

Q∗
h(s, a) + ρmin

a∈A
Q∗

h(s, a).

(24)

Thus, the robust Bellman optimality equation holds at step h. There always exists an optimal robust policy
π∗
h = argmaxa∈A Q∗

h(s, a) and its corresponding optimal adversarial policy π−
h (s) = argmina∈A Q∗

h(s, a) which is

deterministic so that Cπ∗,π−,ρ
h (s) = V ∗

h (s).

15

Then, we prove the commutability of the expectation, the minimization and the maximization operations at step h.

In the proof of robust Bellman equation, we have shown that

min
π′

∑
s

w(s)Cπ,π′,ρ
h (s) =

∑
s

w(s)min
π′

Cπ,π′,ρ
h (s)

for any policy π and any weighted function w. Hence

max
π

min
π′

∑
s

w(s)Cπ,π′,ρ
h (s)

∑
s

= max
π

∑
s

w(s)min
π′

Cπ,π′,ρ
h (s).

First, we have
max
π

∑
s

w(s)min
π′

Cπ,π′,ρ
h (s) ≤

∑
s

w(s)max
π

min
π′

Cπ,π′,ρ
h (s).

Then, we can show

max
π

∑
s

w(s)min
π′

Cπ,π′,ρ
h (s) ≥

∑
s

w(s)min
π′

Cπ∗,π′,ρ
h (s)

=
∑
s

w(s)Cπ∗,π−,ρ
h (s)

=
∑
s

w(s)max
π

min
π′

Cπ,π′,ρ
h (s). (25)

In summary,
max
π

min
π′

∑
s

w(s)Cπ,π′,ρ
h (s)

∑
s

= w(s)max
π

min
π′

Cπ,π′,ρ
h (s).

We can show the perfect duality at step h by

max
π

min
π′

Cπ,π′,ρ
h (s) = Cπ∗,π−,ρ

h (s) = max
π

Cπ,π−,ρ
h (s) ≥ min

π′
max
π

Cπ,π′,ρ
h (s). (26)

By induction on h = H, · · · , 1, we prove Theorem 1.

B Proof for Action Robust Reinforcement Learning with Certificates

In this section, we prove Theorem 2. Recall that we use Q
k

h,V
k

h,Qk

h
,V k

h, Nk
h , P̂ k

h ,r̂kh and θkh to denote the values of
Qh,V h,Q

h
,V h, max{Nh, 1}, P̂h, rh and θh at the beginning of the k-th episode in Algorithm 1.

B.1 Proof of monotonicity

B.1.1 Proof of Lemma 1

When Nk
h (s, a) ≤ 1, (8), (9) and (7) hold trivially by the bound of the rewards and value functions.

For every h ∈ [H] the empiric Bernstein inequality combined with a union bound argument, to take into account that
Nk

h (s, a) > 1 is a random number, leads to the following inequality w.p. 1− SAHδ (see Theorem 4 in [40])∣∣∣(P̂ k
h − Ph)V

∗
h+1(s, a)

∣∣∣ ≤
√

2VP̂k
h
V ∗
h+1(s, a)ι

Nk
h (s, a)

+
7Hι

3(Nk
h (s, a))

, (27)

and ∣∣∣(P̂ k
h − Ph)V

πk

h+1(s, a)
∣∣∣ ≤

√√√√2VP̂k
h
V πk

h+1(s, a)ι

Nk
h (s, a)

+
7Hι

3(Nk
h (s, a))

. (28)

Similarly, with Azuma’s inequality, w.p. 1− SAHδ∣∣r̂kh(s, a)−Rh(s, a)
∣∣ ≤√2V ar(rkh(s, a))ι

Nk
h (s, a)

+
7ι

3(Nk
h (s, a))

≤

√
2r̂kh(s, a)ι

Nk
h (s, a)

+
7ι

3(Nk
h (s, a))

, (29)

where V ar(rkh(s, a)) is the empirical variance of Rh(s, a) computed by the Nk
h (s, a) samples and V ar(rkh(s, a)) ≤

r̂kh(s, a) .

16

B.1.2 Proof of Lemma 2

We first prove that Q
k

h(s, a) ≥ Q∗
h(s, a) for all (s, a, h, k) ∈ S ×A× [H]× [K], by backward induction conditioned

on the event ER ∩ EPV . Firstly, the conclusion holds for h = H + 1 because V H+1(s) = V H+1(s) = 0 and
QH+1(s, a) = Q

H+1
(s, a) = 0 for all s and a. For h ∈ [H], assuming the conclusion holds for h+ 1, by Algorithm 1,

we have

r̂kh(s, a) + P̂ k
hV h+1(s, a) + θkh(s, a)−Q∗

h(s, a)

=r̂kh(s, a) + P̂ k
hV h+1(s, a) + θkh(s, a)−Rh(s, a)− PhV

∗
h+1(s, a)

=r̂kh(s, a)−Rh(s, a) + P̂ k
h

(
V h+1 − V ∗

h+1

)
(s, a) + (P̂ k

h − Ph)V
∗
h+1(s, a) + θkh(s, a)

≥(P̂ k
h − Ph)V

∗
h+1(s, a) +

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+
P̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
+

8H2ι

Nk
h (s, a)

≥

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+
P̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
+

8H2ι

Nk
h (s, a)

−

√
2VP̂k

h
V ∗
h+1(s, a)ι

Nk
h (s, a)

,

(30)

where the first inequality comes from event ER, V h+1(s) ≥ V ∗
h+1(s) and the definition of θkh(s, a) and the last

inequality from event EPV . By the relation of V -values in the step (h+ 1),∣∣∣∣∣VP̂k
h

(
V

k

h+1 + V k
h+1

2

)
(s, a)−VP̂k

h
V ∗
h+1(s, a)

∣∣∣∣∣
≤
∣∣∣[P̂ k

h (V
k

h+1 + V k
h+1)/2]

2 − (P̂ k
hV

∗
h+1)

2
∣∣∣ (s, a) + ∣∣∣P̂ k

h [(V
k

h+1 + V k
h+1)/2]

2 − P̂ k
h (V

∗
h+1)

2
∣∣∣ (s, a)

≤4HP̂ k
h

∣∣∣(V k

h+1 + V k
h+1)/2− V ∗

h+1

∣∣∣ (s, a)
≤2HP̂ k

h

(
V

k

h+1 − V k
h+1

)
(s, a)

(31)

and √
2VP̂k

h
V ∗
h+1(s, a)ι

Nk
h (s, a)

≤

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι+ 4HP̂ k

h

(
V

k

h+1 − V k
h+1

)
(s, a)ι

Nk
h (s, a)

≤

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+

√√√√4HP̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)ι

Nk
h (s, a)

≤

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

+
P̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
+

8H2ι

Nk
h (s, a)

.

(32)

Plugging (32) back into (30), we have r̂kh(s, a) + P̂ k
hV h+1(s, a) + θkh(s, a) ≥ Q∗

h(s, a). Thus, Q
k

h(s, a) = min{H −
h+ 1, r̂kh(s, a) + P̂ k

hV
k

h+1(s, a) + θkh(s, a)} ≥ Q∗
h(s, a).

From the definition of V
k

h(s) and πk
h, we have

V
k

h(s) =(1− ρ)Q
k

h(s, π
k
h(s)) + ρQ

k

h(s, π
k
h(s))

≥(1− ρ)Q
k

h(s, π
∗
h(s)) + ρQ∗

h(s, π
k
h(s))

≥(1− ρ)Q∗
h(s, π

∗
h(s)) + ρmin

a∈A
Q∗

h(s, a) = V ∗
h (s).

(33)

Similarly, we can prove that Qk

h
(s, a) ≤ Qπk

h (s, a) and V k
h(s) ≤ V πk

h (s).

17

r̂kh(s, a) + P̂ k
hV h+1(s, a)− θkh(s, a)−Qπk

h (s, a)

=r̂kh(s, a) + P̂ k
hV h+1(s, a)− θkh(s, a)−Rh(s, a)− PhV

πk

h+1(s, a)

=r̂kh(s, a)−Rh(s, a) + P̂ k
h

(
V h+1 − V πk

h+1

)
(s, a) + (P̂ k

h − Ph)V
πk

h+1(s, a)− θkh(s, a)

≤(P̂ k
h − Ph)V

πk

h+1(s, a)−

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

−
P̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
− 8H2ι

Nk
h (s, a)

≤

√√√√2VP̂k
h
V πk

h+1(s, a)ι

Nk
h (s, a)

−

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)ι

Nk
h (s, a)

−
P̂ k
h

(
V

k

h+1 − V k
h+1

)
(s, a)

H
− 8H2ι

Nk
h (s, a)

≤ 0,

(34)

and

V k
h(s) =(1− ρ)Qk

h
(s, πk

h(s)) + ρQk

h
(s, πk

h(s))

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρmin

a∈A
Qk

h
(s, a)

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρQk

h
(s, argmin

a∈A
Qπk

h (s, a))

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρmin

a∈A
Qπk

h (s, a) = V πk

h (s).

(35)

B.2 Regret Analysis

B.2.1 Proof of Lemma 3

We consider the event ER ∩ EPV . The following analysis will be done assuming the successful event ER ∩ EPV holds.
By Lemma 2, the regret can be bounded by Regret(K) :=

∑K
k=1(V

∗
1 (s

k
1)− V πk

1 (sk1)) ≤
∑K

k=1(V
k

1(s
k
1)− V k

1(s
k
1)).

18

By the update steps in Algorithm 1, we have

V
k

h(s
k
h)− V k

h(s
k
h)

=(1− ρ)Q
k

h(s
k
h, π

k
h(s

k
h)) + ρQ

k

h(s
k
h, π

k
h(s

k
h))− (1− ρ)Qk

h
(skh, π

k
h(s

k
h))− ρQk

h
(skh, π

k
h(s

k
h))

≤[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h) + 2Dπ̃k

h
θh(s

k
h)

=[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− [P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h) + 2Dπ̃k

h
θh(s

k
h)

+ [P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h, a

k
h)

=[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− [P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h) + 2Dπ̃k

h
θh(s

k
h)

+ [P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h, a

k
h)− c1Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)

+ c1Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1) + c2(V

k

h+1 − V k
h+1)(s

k
h+1)

=[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− [P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+ [P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h, a

k
h)− c1Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)

+ c1Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1) + c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+ 2(1− ρ)

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ 2(1− ρ)

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))/H +

2(1− ρ)(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

+ 2ρ

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ 2ρ

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρP̂ k
h (V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))/H +

2ρ(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

=(1 + 1/H)[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− (1 + 1/H)[P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+ (1 + 1/H)[P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h, a

k
h)− c1Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)︸ ︷︷ ︸

(a)

+ c1Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1) + c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+ 2(1− ρ)

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))︸ ︷︷ ︸

(b1)

+2(1− ρ)

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
2(1− ρ)(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

+ 2ρ

√√√√2VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))︸ ︷︷ ︸

(b2)

+ 2ρ

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
2ρ(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

.

(36)

Bound of the error of the empirical probability estimator (a) By Bennett’s inequality, we have that w.p. 1− Sδ

|P̂ k
h (s

′|s, a)− Ph(s
′|s, a)| ≤

√
2Ph(s′|s, a)ι
Nk

h (s, a)
+

ι

3Nk
h (s, a)

(37)

19

holds for all s, a, h, k, s′.

Thus, we have that

(P̂ k
h − Ph)(V

k

h+1 − V k
h+1)(s, a)

=
∑
s′

(P̂ k
h (s

′|s, a)− Ph(s
′|s, a))(V k

h+1(s
′)− V k

h+1(s
′))

≤
∑
s′

√
2Ph(s′|s, a)ι
Nk

h (s, a)
(V

k

h+1(s
′)− V k

h+1(s
′)) +

SHι

3Nk
h (s, a)

≤
∑
s′

(
Ph(s

′|s, a)ι
H

+
H

2Nk
h (s, a)

)(
V

k

h+1(s
′)− V k

h+1(s
′)
)
+

SHι

3Nk
h (s, a)

≤Ph(V
k

h+1 − V k
h+1)(s, a)/H +

SH2

2Nk
h (s, a)

+
SHι

3Nk
h (s, a)

≤Ph(V
k

h+1 − V k
h+1)(s, a)/H +

SH2ι

Nk
h (s, a)

,

(38)

where the second inequality is due to AM-GM inequality.

Bound of the error of the empirical variance estimator (b1) & (b2) Here, we bound VP̂k
h
[(V

k

h+1 +

V k
h+1)/2](s

k
h, a

k
h).

Recall that Cπ,π′,ρ
h (s) = E

[∑H
h′=h Rh′(sh′ , ah′)|sh = s, ah′ ∼ π̃h′(·|sh′)

]
in Appendix A. Set πk∗ here is the optimal

policy towards the adversary policy πk with πk∗
h (s) = argmaxπ C

π,πk,ρ
h (s). Similar to the proof in Appendix B.1.2,

we can show that V
k

h(s) ≥ C
πk∗,πk,ρ
h (s). We also have that Cπk∗,πk,ρ

h (s) = maxπ C
π,πk,ρ
h (s) ≥ C

πk,πk,ρ
h (s) ≥

V πk

h (s) ≥ V k
h(s) . For any (s, a, h, k) ∈ S ×A× [H]× [K], under event ER ∩ EPV ,

VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s, a)−VPh

C
πk∗,πk,ρ
h+1 (s, a)

=P̂ k
h [(V

k

h+1 + V k
h+1)/2]

2(s, a)− [P̂ k
h (V

k

h+1 + V k
h+1)/2]

2(s, a)

− Ph(C
πk∗,πk,ρ
h+1)2(s, a) + (PhC

πk∗,πk,ρ
h+1)2(s, a)

≤[P̂ k
h (V

k

h+1)
2 − (P̂ k

hV
k
h+1)

2 − Ph(V
k
h+1)

2 + (PhV
k

h+1)
2](s, a)

≤|(P̂ k
h − Ph)(V

k

h+1)
2|(s, a) + |(PhV

k
h+1)

2 − (P̂ k
hV

k
h+1)

2|(s, a)

+ Ph|(V
k

h+1)
2 − (V k

h+1)
2|(s, a) + |(PhV

k

h+1)
2 − (PhV

k
h+1)

2|(s, a),

(39)

where the first inequality is due V
k

h(s) ≥ C
πk∗,πk,ρ
h (s) ≥ V k

h(s). The result of [41] combined with a union bound on
Nk

h (s, a) ∈ [K] implies w.p 1− δ

∥P̂ k
h (·|s, a)− Ph(·|s, a)∥1 ≤

√
2Sι

Nk
h (s, a)

(40)

holds for all s, a, h, k.

These terms can be bounded separately by

|(P̂ k
h − Ph)(V

k

h+1)
2|(s, a) ≤ H2

√
2Sι

Nk
h (s, a)

,

|(PhV
k
h+1)

2 − (P̂ k
hV

k
h+1)

2|(s, a) ≤ 2H|(Ph − P̂ k
h)V

k
h+1| ≤ 2H2

√
2Sι

Nk
h (s, a)

,

Ph|(V
k

h+1)
2 − (V k

h+1)
2|(s, a) ≤ 2HPh(V

k

h+1 − V k
h+1)(s, a),

|(PhV
k

h+1)
2 − (PhV

k
h+1)

2|(s, a) ≤ 2HPh(V
k

h+1 − V k
h+1)(s, a),

(41)

20

where the first two inequality is due to (40). In addition, 3H2
√

2Sι
Nk

h (s,a)
≤ 1 + 9SH4ι

2Nk
h (s,a)

. Thus, we have

(1− ρ)

√√√√VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√√√√VP̂k
h
[(V

k

h+1 + V k
h+1)/2](s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

≤(1− ρ)

√√√√VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√√√√VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)

√√√√4HPh(V
k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√√√√4HPh(V
k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+
(1− ρ)

√
9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

+
ρ
√

9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

≤(1− ρ)

√√√√VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√√√√VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)

(
Ph(V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))

2
√
2H

+
2
√
2H2ι

Nk
h (s

k
h, π

k
h(s

k
h))

)

+ ρ

(
Ph(V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))

2
√
2H

+
2
√
2H2ι

Nk
h (s

k
h, π

k
h(s

k
h))

)

+ (1− ρ)

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+
(1− ρ)

√
9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

+
ρ
√
9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

=(1− ρ)

√√√√VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√√√√VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)

2
√
2H

+
2
√
2(1− ρ)H2ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
2
√
2ρH2ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
1

Nk
h (s

k
h, π

k
h(s

k
h))

+
(1− ρ)

√
9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

+
ρ
√
9SH4ι/2

Nk
h (s

k
h, π

k
h(s

k
h))

,

(42)

where the second inequality is due to AM-GM inequality.

21

Recursing on h Plugging (38) and (42) into (36)and setting c1 = 1 + 1/H and c2 = (1 + 1/H)3 , we have

V
k

h(s
k
h)− V k

h(s
k
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− (1 + 1/H)[P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+ (1/H + 1/H2)Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h) +

(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

+ c1Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1) + c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+ 2(1− ρ)

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
2(1− ρ)(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

+ 2ρ

√
2r̂kh(s

k
h, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
2ρ(24H2 + 7H + 7)ι

3Nk
h (s

k
h, π

k
h(s

k
h)))

+ (1− ρ)

√√√√8VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√√√√8VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)

H
+

8(1− ρ)H2ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
8ρH2ι

Nk
h (s

k
h, π

k
h(s

k
h))

+ (1− ρ)

√
8

Nk
h (s

k
h, π

k
h(s

k
h))

+ ρ

√
8

Nk
h (s

k
h, π

k
h(s

k
h))

+
6(1− ρ)

√
SH4ι

Nk
h (s

k
h, π

k
h(s

k
h))

+
6ρ
√
SH4ι

Nk
h (s

k
h, π

k
h(s

k
h))

.

(43)

We set Θk
h(s, a) =

√
8VPh

C
πk∗,πk,ρ
h+1 (s,a)ι

Nk
h (s,a)

+
√

32
Nk

h (s,a)
+ 46

√
SH4ι

Nk
h (s,a)

. Since rkh(s, a) ≤ 1, by organizing the items, we

have that

V
k

h(s
k
h)− V k

h(s
k
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− (1 + 1/H)[P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+ (1/H + 1/H2)Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h) +

(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

+ c1Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1) + c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+
Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h, π

k
h(s

k
h))

H
+Dπ̃k

h
Θk

h(s
k
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− (1 + 1/H)[P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+
1

H
[Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)− Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)]

+ (1 + 3/H + 1/H2)Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+ c2(V
k

h+1 − V k
h+1)(s

k
h+1) +

(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

+Dπ̃k
h
Θk

h(s
k
h)

≤(1 + 1/H)[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)](s

k
h)− (1 + 1/H)[P̂ k

h (V
k

h+1 − V k
h+1)](s

k
h, a

k
h)

+
1

H
[Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)− Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)]

+ c2Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− c2(V

k

h+1 − V k
h+1)(s

k
h+1)

+ c2(V
k

h+1 − V k
h+1)(s

k
h+1) +

(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

+Dπ̃k
h
Θk

h(s
k
h).

(44)

By induction of (36) on h = 1, · · · , H and V
k

h+1 = V k
h+1 = 0, we have that

22

Regret(K) ≤ 21

K∑
k=1

H∑
h=1

(Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h)− P̂ k

h (V
k

h+1 − V k
h+1)(s

k
h, a

k
h)

+
1

H
[Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)− Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)]

+ Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)− (V

k

h+1 − V k
h+1)(s

k
h+1)

+
(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

+Dπ̃k
h
Θk

h(s
k
h)).

(45)

Here we use (1 + 1/H)3H < 21.

B.2.2 Proof of Lemma 4

Recall that M1 =
∑K

k=1

∑H
h=1[Dπ̃k

h
P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h)− P̂ k

h (V
k

h+1 − V k
h+1)(s

k
h, a

k
h)].

Since Eak
h∼Dπ̃k

h

[P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h, a

k
h)] = Dπ̃k

h
P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h), we have that Dπ̃k

h
P̂ k
h (V

k

h+1 −

V k
h+1)(s

k
h) − P̂ k

h (V
k

h+1 − V k
h+1)(s

k
h, a

k
h) is a martingale difference sequence. By the Azuma-Hoeffding inequal-

ity, with probability 1− δ, we have∣∣∣∣∣
K∑

k=1

H∑
h=1

[Dπ̃k
h
P̂ k
h (V

k

h+1 − V k
h+1)(s

k
h)− P̂ k

h (V
k

h+1 − V k
h+1)(s

k
h, a

k
h)]

∣∣∣∣∣ ≤ H
√
2HKι. (46)

B.2.3 Proof of Lemma 5

Recall that M2 =
∑K

k=1

∑H
h=1

1
H [Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h)− Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)].

Since Eak
h∼Dπ̃k

h

[Ph(V
k

h+1 − V k
h+1)(s

k
h, a

k
h)] = Dπ̃k

h
Ph(V

k

h+1 − V k
h+1)(s

k
h), we have that Dπ̃k

h
Ph(V

k

h+1 −

V k
h+1)(s

k
h) − Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h) is a martingale difference sequence. By the Azuma-Hoeffding inequal-

ity, with probability 1− δ, we have∣∣∣∣∣
K∑

k=1

H∑
h=1

[Dπ̃k
h
Ph(V

k

h+1 − V k
h+1)(s

k
h)− Ph(V

k

h+1 − V k
h+1)(s

k
h, a

k
h)]

∣∣∣∣∣ ≤ H
√
2HKι. (47)

B.2.4 Proof of Lemma 6

Recall that M3 =
∑K

k=1

∑H
h=1(P

k
h (V

k

h+1 − V k
h+1)(s

k
h, a

k
h)− (V

k

h+1 − V k
h+1)(s

k
h+1)).

Let the one-hot vector 1̂kh(·|skh, akh) to satisfy that 1̂kh(s
k
h+1|skh, akh) = 1 and 1̂kh(s|skh, akh) = 0 for s ̸= skh+1. Thus,

[(P k
h − 1̂kh)(V

k

h+1 − V k
h+1)](s

k
h, a

k
h) is a martingale difference sequence. By the Azuma-Hoeffding inequality, with

probability 1− δ, we have ∣∣∣∣∣
K∑

k=1

H∑
h=1

[(P k
h − 1̂kh)(V

k

h+1 − V k
h+1)](s

k
h, a

k
h)

∣∣∣∣∣ ≤ H
√
2HKι. (48)

B.2.5 Proof of Lemma 7

We bounded M4 =
∑K

k=1

∑H
h=1[

(SH+SH2)ι

Nk
h (skh,a

k
h)

+Dπ̃k
h
Θk

h(s
k
h)] by separately bounding the four items.

Bound
∑K

k=1

∑H
h=1

(SH+SH2)ι

Nk
h (skh,a

k
h)

We regroup the summands in a different way.

K∑
k=1

H∑
h=1

(SH + SH2)ι

Nk
h (s

k
h, a

k
h)

= (SH + SH2)ι

H∑
h=1

∑
(s,a)∈S×A

NK
h (s,a)∑
n=1

1

n
≤ (SH + SH2)SAHι2. (49)

Recall that Θk
h(s, a) =

√
8VPh

C
πk∗,πk,ρ
h+1 (s,a)ι

Nk
h (s,a)

+
√

32
Nk

h (s,a)
+ 46

√
SH4ι

Nk
h (s,a)

.

23

Bound
∑K

k=1

∑H
h=1[(1− ρ)

√
32ι

Nk
h (skh,π

k
h(s

k
h))

+ ρ
√

32ι
Nk

h (skh,π
k
h(s

k
h))

] We regroup the summands in a different way. For

any policy π, we have

K∑
k=1

H∑
h=1

√
32ι

Nk
h (s

k
h, π(s

k
h))

=

H∑
h=1

∑
(s,a)∈S×A

NK
h (s,a)∑
n=1

√
32ι

n
≤ 8H

√
SAKι. (50)

Bound
∑K

k=1

∑H
h=1[(1− ρ) 46SH2ι

Nk
h (skh,π

k
h(s

k
h))

+ ρ 46SH2ι
Nk

h (skh,π
k
h(s

k
h))

] We regroup the summands in a different way. For any
policy π, we have

K∑
k=1

H∑
h=1

46
√
SH4ι

Nk
h (s

k
h, π(s

k
h))

= 46
√
SH4ι

H∑
h=1

∑
(s,a)∈S×A

NK
h (s,a)∑
n=1

1

n
≤ 46S

3
2AH3ι2. (51)

Bound
∑K

k=1

∑H
h=1

[
(1− ρ)

√
8VPh

C
πk∗,πk,ρ
h+1 (skh,π

k
h(s

k
h))ι

Nk
h (skh,π

k
h(s

k
h))

+ ρ

√
8VPh

C
πk∗,πk,ρ
h+1 (skh,π

k
h(s

k
h))ι

Nk
h (skh,π

k
h(s

k
h))

]
By Cauchy-Schwarz

inequality,

K∑
k=1

H∑
h=1

√√√√VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

≤

√√√√ K∑
k=1

H∑
h=1

VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h)) ·

K∑
k=1

H∑
h=1

ι

Nk
h (s

k
h, π

k
h(s

k
h))

≤

√√√√SAHι2
K∑

k=1

H∑
h=1

VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h)).

(52)

Similarly,

K∑
k=1

H∑
h=1

√√√√VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))ι

Nk
h (s

k
h, π

k
h(s

k
h))

≤

√√√√SAHι2
K∑

k=1

H∑
h=1

VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h)).

(53)

By (1− ρ)a2 + ρb2 ≥ ((1− ρ)a+ ρb)2,

(1− ρ)

√√√√ K∑
k=1

H∑
h=1

VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h)) + ρ

√√√√ K∑
k=1

H∑
h=1

VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))

≤

√√√√ K∑
k=1

H∑
h=1

[(1− ρ)VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h)) + ρVPh

C
πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))].

(54)

Now we bound the total variance. LetDπ̃k
h
Ph(s

′|s) = (1− ρ)Ph(s
′|s, πk

h(s) + ρPh(s
′|s, πk

h(s)),

[Dπ̃k
h
PhVh+1](s) =

∑
s′

[(1− ρ)Ph(s
′|s, πk

h(s)) + ρPh(s
′|s, πk

h(s))]Vh+1(s
′), (55)

and

V[D
π̃k
h
Ph]Vh+1(s) =

∑
s′

[(1− ρ)Ph(s
′|s, πk

h(s)) + ρPh(s
′|s, πk

h(s))][Vh+1(s
′)]2

− [
∑
s′

(
(1− ρ)Ph(s

′|s, πk
h(s)) + ρPh(s

′|s, πk
h(s))

)
Vh+1(s

′)]2.
(56)

24

We have that

V[D
π̃k
h
Ph]C

πk∗,πk,ρ
h+1 (skh)

=
∑
s′

[(1− ρ)Ph(s
′|skh, πk

h(s
k
h)) + ρPh(s

′|skh, πk
h(s

k
h))][C

πk∗,πk,ρ
h+1 (s′)]2

− [
∑
s′

(
(1− ρ)Ph(s

′|skh, πk
h(s

k
h)) + ρPh(s

′|skh, πk
h(s

k
h))
)
C

πk∗,πk,ρ
h+1 (s′)]2

≥(1− ρ)VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h)) + ρVPh

C
πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))

+ (1− ρ)[PhC
πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))]

2 + ρPh[C
πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h))]

2

− [
∑
s′

(1− ρ)Ph(s
′|skh, πk

h(s
k
h))C

πk∗,πk,ρ
h+1 (s′) + ρPh(s

′|skh, πk
h(s

k
h))C

πk∗,πk,ρ
h+1 (s′)]2

≥(1− ρ)VPh
C

πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h)) + ρVPh

C
πk∗,πk,ρ
h+1 (skh, π

k
h(s

k
h)),

(57)

where the last inequality is due to (1− ρ)a2 + ρb2 ≥ ((1− ρ)a+ ρb)2.

With probability 1− 2δ, we also have that

K∑
k=1

H∑
h=1

V[D
π̃k
h
Ph]C

πk∗,πk,ρ
h+1 (skh)

=

K∑
k=1

H∑
h=1

(
[Dπ̃k

h
Ph(C

πk∗,πk,ρ
h+1)2](skh)−

(
[Dπ̃k

h
PhC

πk∗,πk,ρ
h+1](skh)

)2)

=

K∑
k=1

H∑
h=1

(
[Dπ̃k

h
Ph(C

πk∗,πk,ρ
h+1)2](skh)−

(
C

πk∗,πk,ρ
h+1 (skh+1)

)2)

+

K∑
k=1

H∑
h=1

((
C

πk∗,πk,ρ
h+1 (skh+1)

)2
−
(
[Dπ̃k

h
PhC

πk∗,πk,ρ
h+1](skh)

)2)

≤H2
√
2HKι+

K∑
k=1

H∑
h=1

(
(C

πk∗,πk,ρ
h (skh))

2 −
(
[Dπ̃k

h
PhC

πk∗,πk,ρ
h+1](skh)

)2)
−

K∑
k=1

(C
πk∗,πk,ρ
1 (sk1))

2

≤H2
√
2HKι+ 2H

K∑
k=1

H∑
h=1

|Cπk∗,πk,ρ
h (skh)−Dπ̃k

h
PhC

πk∗,πk,ρ
h+1 (skh)|

≤H2
√
2HKι+ 2H

K∑
k=1

(
C

πk∗,πk,ρ
1 (sk1) +

H∑
h=1

(
C

πk∗,πk,ρ
h+1 (skh+1)−Dπ̃k

h
PhC

πk∗,πk,ρ
h+1 (skh, a

k
h)
))

≤H2
√
2HKι+ 2H2K + 2H2

√
2HKι

≤3H2K + 9H3ι/2,

(58)

where the first inequality holds with probability 1− δ by Azuma-Hoeffding inequality, the second inequality is due
to the bound of V-values, the third inequality is due to Lemma 2 so that Cπk∗,πk,ρ

h (skh) ≥ Dπ̃k
h
D

πk∗,πk,ρ
h (skh) ≥

Dπ̃k
h
PhC

πk∗,πk,ρ
h+1 (skh), the fourth inequality holds with probability 1− δ by Azuma-Hoeffding inequality, and the last

inequality holds with 2ab ≤ a2 + b2.

In summary, with probability at least 1− δ, we have
∑K

k=1

∑H
h=1VPh

V πk

h+1(s
k
h, a

k
h) ≤ (H2K +H3ι).

In summary,
∑K

k=1

∑H
h=1Dπ̃k

h
Θk

h(s
k
h) ≤ 8

√
SAH2Kι + 46S

3
2AH3ι2 +

√
24SAH3Kι2 + 36SAH5ι2 ≤

8
√
SAH2Kι+ 46S

3
2AH3ι2 +

√
24SAH3Kι+ 6

√
SAH5ι.

25

C Proof for model-free algorithm

In this section, we prove Theorem 3. Recall that we use Q
k

h,V
k

h,Qk

h
,V k

h and Nk
h to denote the values of Qh,V h,Q

h
,V h

and max{Nh, 1} at the beginning of the k-th episode.

Property of learning rate αt We refer the readers to the setting of the learning rate αt :=
H+1
H+t and the Lemma 4.1

in [30]. For notational convenience, define α0
t :=

∏t
j=1(1− αt) and αi

t := αi

∏t
j=i+1(1− αt). Here, we introduce

some useful properties of αi
t which were proved in [30]:

(1)
∑t

i=1 α
i
t = 1 and α0

t = 0 for t ≥ 1;
(2)
∑t

i=1 α
i
t = 0 and α0

t = 1 for t = 0;

(3) 1√
t
≤
∑t

i=1
αi

t√
t
≤ 2√

t
for every t ≥ 1;

(4)
∑t

i=1(α
i
t)

2 ≤ 2H
t for every t ≥ 1;

(5)
∑∞

t=i α
i
t ≤ (1 + 1

H) for every i ≥ 1.

Recursion on Q As shown in [30], at any (s, a, h, k) ∈ S ×A× [H]× [K], let t = Nk
h (s, a) and suppose (s, a) was

previously taken by the agent at step h of episodes k1, k2, . . . , kt < k. By the update equations in Algorithm 2 and the
definition of αi

t, we have

Q
k

h(s, a) = α0
t (H − h+ 1) +

t∑
i=1

αi
t

(
rki

h + V
ki

h+1(s
ki

h+1) + bi

)
;

Qk

h
(s, a) =

t∑
i=1

αi
t

(
rki

h + V ki

h+1(s
ki

h+1)− bi

)
.

(59)

Thus,

(Q
k

h −Q∗
h)(s, a) =α0

t (H − h+ 1) +

t∑
i=1

αi
t

(
rki

h + V
ki

h+1(s
ki

h+1) + bi

)
−

(
α0
tQ

∗
h(s, a) +

t∑
i=1

αi
t

(
Rh(s, a) + PhV

∗
h+1(s, a)

))

=α0
t (H − h+ 1−Q∗

h(s, a)) +

t∑
i=1

αi
t

(
(V

ki

h+1 − V ∗
h+1)(s

ki

h+1)
)

+

t∑
i=1

αi
t

(
(rki

h −Rh(s, a)) + V ∗
h+1(s

ki

h+1)− PhV
∗
h+1(s, a) + bi

)
,

(60)

and similarly

(Qk

h
−Qπk

h)(s, a) =

t∑
i=1

αi
t

(
rki

h + V ki

h+1(s
ki

h+1)− bi

)
−

(
α0
tQ

πk

h (s, a) +

t∑
i=1

αi
t

(
Rh(s, a) + PhV

πk

h+1(s, a)
))

=− α0
tQ

πk

h (s, a) +

t∑
i=1

αi
t

(
[Ph(V

ki

h+1 − V πk

h+1)](s, a)
)

+

t∑
i=1

αi
t

(
(rki

h −Rh(s, a)) + V ki

h+1(s
ki

h+1)− PhV
ki

h+1(s, a)− bi

)
.

(61)

26

In addition, for any k′ ≤ k, let t′ = Nk′

h (s, a). Thus, (s, a) was previously taken by the agent at step h of episodes
k1, k2, . . . , kt′ < k′. We have

(Qk′

h
−Qπk

h)(s, a) =− α0
tQ

πk

h (s, a) +

t′∑
i=1

αi
t′

(
[Ph(V

ki

h+1 − V πk

h+1)](s, a)
)

+

t′∑
i=1

αi
t′

(
(rki

h −Rh(s, a)) + V ki

h+1(s
ki

h+1)− PhV
ki

h+1(s, a)− bi

)
.

(62)

Confidence bounds By the Azuma-Hoeffding inequality, with probability 1 − δ, we have that for all s, a, h and
t ≤ K, ∣∣∣∣∣

t∑
i=1

αi
t

(
(rki

h −Rh(s, a)) + V ki

h+1(s
ki

h+1)− PhV
ki

h+1(s, a)
)∣∣∣∣∣ ≤ H

√√√√ t∑
i=1

(αi
t)

2ι/2 ≤
√

H3ι/t. (63)

At the same time, with probability 1− δ, we have that for all s, a, h and t ≤ K,∣∣∣∣∣
t∑

i=1

αi
t

(
(rki

h −Rh(s, a)) + V ∗
h+1(s

ki

h+1)− PhV
∗
h+1(s, a)

)∣∣∣∣∣ ≤√H3ι/t. (64)

In addition, we have
√

H3ι/t ≤
∑t

i=1 α
i
tbi ≤ 2

√
H3ι/t.

Monotonicity Now we prove that V
k

h(s) ≥ V ∗
h (s) ≥ V πk

h (s) ≥ V k
h(s) and Q

k

h(s, a) ≥ Q∗
h(s, a) ≥ Qπk

h (s, a) ≥
Qk

h
(s, a) for all (s, a, h, k) ∈ S ×A× [H]× [K].

At step H + 1, we have V
k

H+1(s) = V ∗
H+1(s) = V πk

H+1(s) = V k
H+1(s) = 0 and Q

k

H+1(s, a) = Q∗
H+1(s, a) =

Qπk

H+1(s, a) = Qk

H+1
(s, a) = 0 for all (s, a, k) ∈ S ×A× [K].

Consider any step h ∈ [H] in any episode k ∈ [K], and suppose that the monotonicity is satisfied for all previous
episodes as well as all steps h′ ≥ h+ 1 in the current episode, which is

V
k′

h′(s) ≥ V ∗
h′(s) ≥ V πk′

h′ (s) ≥ V k′

h′(s) ∀(k′, h′, s) ∈ [k − 1]× [H + 1]× S,

Q
k′

h′(s, a) ≥ Q∗
h′(s, a) ≥ Qπk′

h′ (s, a) ≥ Qk′

h′(s, a) ∀(k′, h′, s, a) ∈ [k − 1]× [H + 1]× S ×A,

V
k

h′(s) ≥ V ∗
h′(s) ≥ V πk

h′ (s) ≥ V k
h′(s) ∀h′ ≥ h+ 1 and s ∈ S,

Q
k

h′(s, a) ≥ Q∗
h′(s, a) ≥ Qπk

h′ (s, a) ≥ Qk

h′(s, a) ∀h′ ≥ h+ 1 and (s, a) ∈ S ×A.

(65)

We first show the monotonicity of Q values. We have

(Q
k

h −Q∗
h)(s, a) ≥ α0

t (H − h+ 1−Q∗
h(s, a)) +

t∑
i=1

αi
t

(
(V

ki

h+1 − V ∗
h+1)(s

ki

h+1)
)
≥ 0, (66)

and, by to the update rule of V values (line 13) in Algorithm 2,

(Qk

h
−Qπk

h)(s, a) ≤− α0
tQ

πk

h (s, a) +

t∑
i=1

αi
t

(
[Ph(V

ki

h+1 − V πk

h+1)](s, a)
)

≤− α0
tQ

πk

h (s, a) +

t∑
i=1

αi
t

(
[Ph(V

k
h+1 − V πk

h+1)](s, a)
)
≤ 0.

(67)

In addition, for any k′ ≤ k,

(Qk′

h
−Qπk

h)(s, a) ≤− α0
tQ

πk

h (s, a) +

t′∑
i=1

αi
t′

(
[Ph(V

ki

h+1 − V πk

h+1)](s, a)
)

≤− α0
tQ

πk

h (s, a) +

t′∑
i=1

αi
t′

(
[Ph(V

k
h+1 − V πk

h+1)](s, a)
)
≤ 0.

(68)

27

Then, we show the monotonicity of V values. We have that

(1− ρ)max
a

Q
k

h(s, a) + ρQ
k

h(s, argmin
a

Qk

h
(s, a))

≥(1− ρ)max
a

Q
k

h(s, a) + ρQ∗
h(s, argmin

a
Qk

h
(s, a))

≥(1− ρ)Q
k

h(s, π
∗
h(s)) + ρmin

a∈A
Q∗

h(s, a)

≥(1− ρ)Q∗
h(s, π

∗
h(s)) + ρmin

a∈A
Q∗

h(s, a) = V ∗
h (s).

(69)

By the update rule of V values (line 12) in Algorithm 2,

V
k

h(s) = min{V k−1

h (s), (1− ρ)max
a

Q
k

h(s, a) + ρQ
k

h(s, argmin
a

Qk

h
(s, a))} ≥ V ∗

h (s). (70)

Here, we need use the update rule of policy π (line 11-16) in Algorithm 2. Define τ(k, h, s) := max{k′ : k′ <
k and V k′+1

h (s) = (1 − ρ)Qk′+1

h
(s, argmaxa Q

k′+1

h (s, a)) + ρmina Q
k′+1

h
(s, a)}, which denotes the last episode

(before the beginning of the episode k), in which the π and V was updated at (h, s). For notational simplicity, we use τ
to denote τ(k, h, s) here. After the end of episode τ and before the beginning of the episode k, the agent policy π was
not updated and V was not updated at (h, s), i.e. V k

h(s) = V τ+1
h (s) = (1− ρ)Qτ+1

h
(s, πτ+1

h (s)) + ρmina Q
τ+1

h
(s, a)

and πk
h(s) = πτ+1

h (s) = argmaxa Q
τ+1

h (s, a)). Thus,

V k
h(s) =(1− ρ)Qτ+1

h
(s, πτ+1

h (s)) + ρmin
a

Qτ+1

h
(s, a)

≤(1− ρ)Qπk

h (s, πτ+1
h (s)) + ρmin

a
Qτ+1

h
(s, a)

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρQτ+1

h
(s, argmin

a∈A
Qπk

h (s, a))

≤(1− ρ)Qπk

h (s, πk
h(s)) + ρmin

a∈A
Qπk

h (s, a) = V πk

h (s).

(71)

By induction from h = H + 1 to 1 and k = 1 to K, we can conclude that V
k

h(s) ≥ V ∗
h (s) ≥ V πk

h (s) ≥ V k
h(s) and

Q
k

h(s, a) ≥ Q∗
h(s, a) ≥ Qπk

h (s, a) ≥ Qk

h
(s, a) for all (s, a, h, k) ∈ S ×A× [H]× [K].

Regret analysis According to the monotonicity, the regret can be bounded by

Regret(K) :=

K∑
k=1

(V ∗
1 (s

k
1)− V πk

1 (sk1)) ≤
K∑

k=1

(V
k

1(s
k
1)− V k

1(s
k
1)). (72)

By the update rules in Algorithm 2, we have

V
k

h(s
k
h)− V k

h(s
k
h)

≤(1− ρ)Q
k

h(s
k
h, argmax

a
Q

k

h(s
k
h, a)) + ρQ

k

h(s
k
h, argmin

a
Qk

h
(skh, a))

− (1− ρ)Qk

h
(skh, argmax

a
Q

k

h(s
k
h, a)) + ρQk

h
(skh, argmin

a
Qk

h
(skh, a))

=(1− ρ)[Q
k

h −Qk

h
](skh, a

k
h) + ρ[Q

k

h −Qk

h
](skh, a

k
h)

=[Q
k

h −Qk

h
](skh, a

k
h) + [Dπ̃k

h
(Q

k

h −Qk

h
)](skh)− [Q

k

h −Qk

h
](skh, a

k
h).

(73)

Set nk
h = Nk

h (s
k
h, a

k
h) and where ki(s

k
h, a

k
h) is the episode in which (skh, a

k
h) was taken at step h for the i-th time. For

notational simplicity, we set ϕk
h = V

k

h(s
k
h)−V k

h(s
k
h) and ξkh = [Dπ̃k

h
(Q

k

h−Qk

h
)](skh)− [Q

k

h−Qk

h
](skh, a

k
h). According

28

to the update rules,

ϕk
h =V

k

h(s
k
h)− V k

h(s
k
h)

≤α0
nk
h
(H − h+ 1) +

nk
h∑

i=1

αi
nk
h

(
V

ki(s
k
h,a

k
h)

h+1 (s
ki(s

k
h,a

k
h)

h+1)− V
ki(s

k
h,a

k
h)

h+1 (s
ki(s

k
h,a

k
h)

h+1) + 2bi

)
+ [Dπ̃k

h
(Q

k

h −Qk

h
)](skh)− [Q

k

h −Qk

h
](skh, a

k
h)

=α0
nk
h
(H − h+ 1) +

nk
h∑

i=1

αi
nk
h
(ϕ

ki(s
k
h,a

k
h)

h+1 + 2bi) + ξkh

≤α0
nk
h
(H − h+ 1) +

nk
h∑

i=1

αi
nk
h
ϕ
ki(s

k
h,a

k
h)

h+1 + ξkh + 4
√

H3ι/nk
h.

(74)

We add V
k

h(s
k
h)− V k

h(s
k
h) over k and regroup the summands in a different way. Note that for any episode k, the term∑nk

h
i=1 α

i
nk
h

ϕ
ki(s

k
h,a

k
h)

h+1 takes all the prior episodes ki < k where (skh, a
k
h) was taken into account. In other words, for any

episode k′, the term ϕk′

h+1 appears in the summands at all posterior episodes k > k′ where (sk
′

h , ak
′

h) was taken. The
first time it appears we have nk

h = nk′

h + 1, and the second time it appears we have nk
h = nk′

h + 2, and so on. Thus, we
have

K∑
k=1

(V
k

h(s
k
h)− V k

h(s
k
h))

≤
K∑

k=1

α0
nk
h
(H − h+ 1) +

K∑
k=1

nk
h∑

i=1

αi
nk
h
ϕ
ki(s

k
h,a

k
h)

h+1 +

K∑
k=1

ξkh +

K∑
k=1

4
√

H3ι/nk
h

=

K∑
k=1

α0
nk
h
(H − h+ 1) +

K∑
k′=1

ϕk′

h+1

nK
h∑

t=nk′
h +1

α
nk′
h

t +

K∑
k=1

ξkh +

K∑
k=1

4
√
H3ι/nk

h

≤
K∑

k=1

α0
nk
h
(H − h+ 1) + (1 + 1/H)

K∑
k=1

ϕk
h+1 +

K∑
k=1

ξkh +

K∑
k=1

4
√

H3ι/nk
h

(75)

where the final inequality uses the property
∑∞

t=i α
i
t ≤ (1 + 1

H) for every i ≥ 1.

Taking the induction from h = 1 to H , we have
K∑

k=1

(V
k

1(s
k
1)− V k

1(s
k
1))

≤3
H∑

h=1

K∑
k=1

α0
nk
h
(H − h+ 1) + 3

H∑
h=1

K∑
k=1

ξkh +

H∑
h=1

K∑
k=1

12
√
H3ι/nk

h

(76)

where we use the fact that (1 + 1/H)H < 3 and ϕk
H+1 = 0 for all k.

We bound the three items separately.

(1) We have
∑H

h=1

∑K
k=1 α

0
nk
h

(H − h+ 1) =
∑H

h=1

∑K
k=1 1[n

k
h = 0](H − h+ 1) ≤ SAH2.

(2) Similar to Lemma 4, by the Azuma-Hoeffding inequality, with probability 1 − δ, we have
∑H

h=1

∑K
k=1 ξ

k
h ≤

H
√
2HKι.

(3) We have
∑H

h=1

∑K
k=1 12

√
H3ι/nk

h =
∑H

h=1

∑
(s,a)

∑NK
h (s,a)

n=1

√
H3ι/n ≤ H

√
2H3SAKι.

In summary,

Regret(K) =

K∑
k=1

(V ∗
1 (s

k
1)− V πk

1 (sk1)) ≤ O(
√
SAH5Kι+ SAH2)

29

and

V ∗
1 (s1)− V πout

1 (s1) ≤V
K+1

1 (s1)− V K+1
1 (s1)

= min
k∈[K+1]

(V
k

1(s
k
1)− V k

1(s
k
1))

≤O

(√
SAH5ι

K
+

SAH2

K

)
.

(77)

30

	Introduction
	Related work
	Problem formulation
	Existence of the optimal robust policy
	Algorithm and main results
	Algorithm description
	Theoretical guarantee

	Proof sketch
	Proof of monotonicity
	Regret analysis

	Model-free method
	Simulation results
	Conclusion
	Proof of Theorem 1
	Proof for Action Robust Reinforcement Learning with Certificates
	Proof of monotonicity
	Proof of Lemma 1
	Proof of Lemma 2

	Regret Analysis
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7

	Proof for model-free algorithm

