
USE: DYNAMIC USER MODELING WITH
STATEFUL SEQUENCE MODELS

Zhihan Zhou†* Qixiang Fang‡* Leonardo Neves§ Francesco Barbieri§
Yozen Liu§ Han Liu† Maarten W. Bos§ Ron Dotsch§

†Northwestern University, USA ‡Utrecht University, Netherlands §Snap Inc, USA
zhihanzhou@u.northwestern.edu, q.fang@uu.nl

{lneves, yliu2}@snapchat.com, hanliu@northwestern.edu
maarten.w.bos@gmail.com, rdotsch@gmail.com

ABSTRACT

User embeddings play a crucial role in user engagement forecasting and personalized services. Recent
advances in sequence modeling have sparked interest in learning user embeddings from behavioral
data. Yet behavior-based user embedding learning faces the unique challenge of dynamic user
modeling. As users continuously interact with the apps, user embeddings should be periodically
updated to account for users’ recent and long-term behavior patterns. Existing methods highly rely
on stateless sequence models that lack memory of historical behavior. They have to either discard
historical data and use only the most recent data or reprocess the old and new data jointly. Both cases
incur substantial computational overhead. To address this limitation, we introduce the User Stateful
Embedding (USE). USE generates user embeddings and reflects users’ evolving behaviors without
the need for exhaustive reprocessing by storing previous model states and revisiting them in the
future. Furthermore, we introduce a novel training objective named future W -behavior prediction to
transcend the limitations of next-token prediction by forecasting a broader horizon of upcoming user
behaviors. By combining it with the Same User Prediction, a contrastive learning-based objective
that predicts whether different segments of behavior sequences belong to the same user, we further
improve the embeddings’ distinctiveness and representativeness. We conducted experiments on
8 downstream tasks using Snapchat users’ behavioral logs in both static (i.e., fixed user behavior
sequences) and dynamic (i.e., periodically updated user behavior sequences) settings. We demonstrate
USE’s superior performance over established baselines. The results underscore USE’s effectiveness
and efficiency in integrating historical and recent user behavior sequences into user embeddings in
dynamic user modeling.

1 Introduction

The era of digital transformation has ushered in an unprecedented emphasis on personalization, primarily driven by the
ability to understand and predict user behavior. In this context, user embeddings – numerical vector representations of
user characteristics, behavioral patterns, and preferences – have become indispensable. These embeddings are central to
a myriad of applications, from recommendation systems to targeted advertising (Chen et al., 2018a; Modell et al., 2021;
Wu et al., 2020), and their effectiveness directly influences user experience and engagement. In the present work, we
study general-purpose user embeddings that can be directly used for various downstream tasks without fine-tuning the
upstream user embedding model, as opposed to task-specific user embeddings (Fan et al., 2019; Liu et al., 2010; Waller
and Anderson, 2019; Zheng et al., 2017).

User embeddings can be calculated from various data sources such as demographic data (e.g., age, gender, etc.) and
user-created content (e.g., photos and messages). In this work, we focus on behavior-based user embedding models
(see Figure 1 as an example), which take solely behavior sequences (e.g., open_app -> open_camera -> apply_filter ->
close_app) as input to compute user embeddings. Such sequences reflect the actions users take in an app. A good user

*Equal contribution

1

ar
X

iv
:2

40
3.

13
34

4v
1

 [
cs

.S
I]

 2
0

M
ar

 2
02

4

mailto:zhihanzhou@u.northwestern.edu
mailto:q.fang@uu.nl
mailto:lneves@snapchat.com
mailto:yliu2@snapchat.com
mailto:hanliu@northwestern.edu
mailto:maarten.w.bos@gmail.com
mailto:rdotsch@gmail.com

embedding should reflect both their recent behavior as well as more long-term and potentially recurring behavior. Thus,
as users continuously interact with an app, their embeddings should be periodically updated in response to their newly
extended behavior sequences. This requires that user embedding models be efficiently updated with new behavioral
data without sacrificing information about past user behaviors.

Use
Filter

Add
Friend

View
Snap

Close
App...

Use
Filter

Open
Camera

Close
App...Open

Camera

End
Chat

Add
Friend

Close
App...Start

Chat

Add
Friend

Add
Friend

Close
App...Add

Friend

...

...

User 1

User 2

User 3

User N

User Behavior Sequence Embedding

Figure 1: Illustration of behavior-based user embedding.
We aim to represent each user with a fixed-size numerical
vector based on their behavior sequences.

Existing techniques for behavior-based user embeddings
(Chu et al., 2022; Pancha et al., 2022; Zhang et al., 2020)
predominantly rely on stateless models (e.g., Transform-
ers (Vaswani et al., 2017)), which generate outputs purely
based on current inputs without the memorization of his-
torical inputs going back further than the context window
of the current input. While these methods are powerful in
capturing complex patterns in user behavior, they exhibit
significant limitations in dynamic environments due to
their inability to efficiently incorporate both historical and
new data when updating user embeddings. When con-
fronted with new behavior sequences, these models face
a trade-off: either disregard historical data for efficiency,
leading to a loss of valuable long-term behavioral insights
or compute embeddings from scratch by processing all
available data, incurring substantial computational costs
and delays. In the first case, a possible strategy to include
historical information is pooling the old embeddings with

new embeddings based on the incoming data. However, our empirical analysis reveals that computing new embeddings
without conditioning on historical user data can still result in substantial information loss, as detailed in Table 2 and 3.
This problem is even more challenging in traffic-intensive apps where often hundreds of events are generated by each
user every day.

To address this challenge, we introduce USE, which stands for User Stateful Embeddings, an approach that can
efficiently produce user embeddings equivalent to explicitly incorporating all available data (including historical
information) as model input, while maintaining constant computational costs regardless of the amount of user historical
data. Specifically, USE retains a state of past behaviors for each user; as new behavior data comes in, it efficiently
computes new user embeddings by updating the previous user state, without the need to explicitly use all available data
as model input.

To implement USE, we consider several aspects. The first is model architecture. We achieve statefulness by adopting the
Retentive Network (RetNet) (Sun et al., 2023). RetNet was originally designed for natural language processing. It can
be trained in parallel like Transformers while making inferences sequentially like Recurrent Neural Networks (RNN).
The Transformer-like architecture ensures training scalability and user representation capability, while the sequential
inference allows efficient updates of user embeddings, making RetNet an ideal choice for dynamic user modeling.

Second, we consider the training target. Next-token prediction has become the default pre-training target for almost all
existing large language models (LLM) (Radford et al., 2019; Sun et al., 2023). This training objective closely matches
the natural language generation process, yet it is less suitable for user embedding learning. Given the stochastic nature
of user behavior and the absence of consistent syntax and grammar in user behavior sequences, accurately predicting the
exact next user behavior is not only less feasible but also likely detrimental to the model’s ability to capture longer term
user interests. Thus, we relax the order component in traditional next-token prediction and introduce a unique training
objective named Future W -Behaviors Prediction (FBP). Instead of predicting the exact next behavior, FBP trains
the model to predict the presence of all the behaviors in the future W user behaviors, where a larger W emphasizes
longer-term user engagements and a smaller W emphasizes shorter-term user engagements. FBP thus prevents the
model from overfitting to the idiosyncrasies in user behavior sequences, while allowing the embeddings to capture
longer-term user intentions.

Third, we consider the encoding of both user states and user traits. Ideal behavioral user embeddings should encode both
the state component of a user (what the user might do based on the current state, as captured with future W -behaviors
prediction) and the trait (habitual) component of user behavior (what the user tends to do most of the time). To this end,
we incorporate the Same User Prediction (SUP), a contrastive learning-based training objective that predicts whether
different segments of behavior sequences belong to the same user. This way, the model 1) is forced to learn to represent
stable user features (traits) in addition to representing momentary behaviors (states), and 2) improves the distinctiveness
and representational capability of the embeddings for individual users.

2

Open
App

Add
Friend

Start
Chat

Close
App... Open

App
View
Snap

Add
Friend

Close
App...User Behavior Sequence

Period 1 Period 2

Stateless

Recent Only

Pool Embeddings

Stateful

Recompute All ... E1

... E1

... E1

... E2

... E2

... E2’

...

E2

... E1S1 ... E2’S2

Performance Efficiency Versatility

E2

Average
Condition On

Figure 2: Visualization of dynamic user modeling. The empty rectangles indicate user actions; the round shapes indicate
user embedding; the drum shapes indicate user states.

To validate our approach, we conduct extensive empirical analyses using behavioral sequences from users of Snapchat,
a popular multimedia instant messaging platform, with about 400 million daily active users as of the second quarter
of 2023 (Statista, 2023). Overall, our analyses demonstrate the superiority of USE over strong baselines in both
static and dynamic settings. Specifically, by evaluating USE on 8 downstream tasks, we illustrate the effectiveness of
the combined future W -behavior prediction and same user prediction training objectives over typical NLP training
objectives in the context of user modeling. Furthermore, by comparing user embeddings generated using identical
models but with different updating strategies, we demonstrate both the effectiveness and efficiency of USE in seamlessly
integrating historical and recent user behavior data into user embeddings. Compared to other approaches, USE not only
substantially reduces computational costs but also consistently delivers higher-quality user embeddings across nearly all
evaluation settings.

Our contributions are threefold: 1) we introduce stateful user embeddings, 2) we develop novel training objectives to
enhance these embeddings, and 3) we empirically demonstrate the superiority of USE over existing methods. This work
not only advances user modeling research but also sets a new standard for efficient and effective personalization in
dynamic online environments.

2 Preliminaries

2.1 Behavior-based User Modeling

User embeddings (fixed-size numerical vectors representing user characteristics and preferences) play a crucial role in
personalization systems. These systems encompass a range of applications, including user understanding, detection of
malicious users, friend suggestions, and item recommendations. Various methodologies have been developed to derive
user embeddings from different types of user data (Fan et al., 2019; Liu et al., 2010; Modell et al., 2021; Waller and
Anderson, 2019; Zheng et al., 2017).

This work focuses on behavior-based user modeling. Our objective is to compute user embeddings based on their
behavior sequences, while deliberately avoiding the use of demographic data (e.g., age, race, nationality, and gender) or
user-generated content (e.g., posts and messages), which are commonly used in the field of user modeling. Additionally,
deriving user embeddings exclusively from natural interactions with the app reduces the need for active user input, like
filling out surveys, thereby minimizing user burden and enhancing user experience.

Let us define B = {b1, b2, . . . , bB} as the set of B unique user behaviors, where each behavior {bi}Bi=1 represents a
distinct type of user interaction with the app (for example, opening the app or sending a message). Our model solely
relies on the type of these user interactions. Let xk = [xk

1 , x
k
2 , . . . , x

k
n] denote the behavior sequence of the k-th user

uk, with each xk
i ∈ B. The behavior-based user models take xk as input to generate a fixed-size vector ek, representing

the embedding of user uk.

2.2 Stateless and Stateful User Modeling

A key challenge in behavior-based user modeling lies in the dynamic nature of user behavior sequences. As users
interact with the app over time, their behavior sequences expand with new entries. To reflect the latest user behaviors
accurately, it is essential to periodically update user embeddings.

3

For notation simplicity, let xp0 = [x1, x2, . . . , xp0] be the initial behavior sequence for user u, where p0 denotes the
index of the last behavior up to the first computation period (period 0). The user’s embedding ep0 is derived from
xp0 . After some period (e.g., a week), a new behavior sequence xp1 = [xp0+1, . . . , xp1] is generated, necessitating the
recomputation of the user embedding, now based on both xp0

and xp1
. This process repeats with each new period,

accumulating more behavior data for embedding calculations.

In this dynamic setting, a stateless model (such as Transformer (Vaswani et al., 2017) and Convolutional Neural
Networks (He et al., 2016a)), which computes outputs based solely on current input sequences, can adopt one of three
strategies for periodic embedding updating: Recent Only, Pool Embeddings, and Recompute All (visualized in
Figure 2). Recent Only discards historical data, relying only on the latest user behavior sequences for embedding
generation. Pool Embeddings enhances the first strategy by combining new embeddings with previously calculated
ones. Recompute All always uses the entire user behavior sequence as input to compute embeddings at each period.
While Recent Only and Pool Embeddings are computationally efficient, they disregard historical behavior sequences
when computing outputs for sequences in the new period and may thus sacrifice effectiveness. Recompute All, while
utilizing complete user history, incurs high computational costs.

The concept of a stateful user model is meant to address these limitations of stateless models. By maintaining
and utilizing historical intermediate results in future computations, a stateful model achieves high computational
efficiency without losing historical information. At period pi−1, the stateful model calculates the user embedding
epi−1

and produces a state spi−1
—the model’s memory of the user’s relevant history. In the subsequent period pi, the

model processes the new behavior sequence xpi
= [xpi−1+1, . . . , xpi

] alongside the last state spi−1
, thus generating

embeddings that encompass the entire user behavior history efficiently and effectively.

3 Method

3.1 Model Architecture

Theoretically, USE can be implemented with any model architecture that enables recurrent inference. We choose the
implementation of RetNet (Sun et al., 2023) for its demonstrated effectiveness and efficiency over earlier methods in
natural language processing research. The key difference introduced by RetNet is replacing the Attention operation
with Retention, a operation than can be equivalently formatted in parallel and recurrent ways. Retention’s parallel form
empowers RetNet with Transformer-level scalability and representation power, while its recurrent form enables the
modeling of states and efficient inference. In this section, we focus on the core idea behind our implementation of
stateful embeddings with RetNet. Please refer to the original paper Sun et al. (2023) for more technical details.

Let x = [x1, x2, . . . , xn] define an input sequence of length n and qi, ki, and vi respectively define the query, key, and
value matrices of xi at a Transformer/RetNet layer. Let oan and orn define the output of xn after respectively the attention
and retention calculation, where the attention operation is defined as follows:

oan = softmax([qnk
⊤
1 , qnk

⊤
2 , . . . , qnk

⊤
n]) · [v1, v2, . . . , vn] (1)

Because of the non-linear softmax function, to calculate the n-th output on, we need to perform the dot product
between qn and all the previous k before applying softmax. This leads to a computational complexity of O(n).
The retention operation, however, removes the softmax function, so that computation between q, k, and v can be
reordered by performing k⊤v first, enabling the following definition of the retention operation:

orn =

n∑
m=1

γn−mqnk
⊤
mvm = qn

n∑
m=1

γn−mk⊤mvm

= qn(γ
n−1k⊤1 v1 + γn−2k⊤2 v2 + · · ·+ γ0k⊤n vn)

(2)

where γ is a hyperparameter between 0 and 1 that explicitly reduces the importance of distant tokens in current output.
Let s1 = k⊤1 v1 and sn = γsn−1 + k⊤n vn, we have (γn−1k1v1 + γn−2k2v2 + · · ·+ γ0knvn) = sn. Equation 2 can be
written as orn = qnsn = qn(γsn−1 + k⊤n vn). In other words, current output orn only depends on current query qn, kn,
vn, and the latest state sn−1, leading to computational complexity of O(1). More importantly, computing embeddings
in this way results in identical outputs as feeding the entire behavior sequence as input.

This operation can be further extended to chunk-wise recurrent inference. When the latest state sn−1 is pre-computed
on input [x1, x2, . . . , xn−1], the computational cost on the input sequence [xn, xn+1, . . . , xn+m] only depends on m,
regardless of the historical behavior length n. Note that, in the chunk-wise recurrent inference, the output of each
{xi}mi=n is performed in parallel. Therefore, compared to purely recurrent models such as RNNs, it is much more
efficient without sequential dependency within [xn, xn+1, . . . , xn+m].

4

In dynamic user modeling, we start with a user behavior sequence xp0 = [x1, x2, . . . , xp0] for user u. We initialize the
first state s0 as an all-zero matrix and perform a chunk-wise recurrent forward pass to get the last hidden states of each
input behavior hp0 = [h1, h2, . . . , hp0] as well as new state sp0 . The user embedding is calculated as ep0 = 1

p0

∑p0

i=1 hi.
After a certain period, when new behavior sequence xp1 = [xp0+1, . . . , xp1] is available, we perform another chunk-
wise recurrent forward pass with xp1 and sp0 as input and obtain hp1 = [hp0+1, . . . , hp1] and sp1 . The user embedding
is then calculated as ep1

= p0

p1
ep0

+ p1−p0

p1
ep∗

1
, where ep∗

1
= 1

p1−p0

∑p1

i=p0+1 hi is the average of new hidden states.

3.2 Training Objectives

We aim to train a user model that can predict users’ future engagements with the app and discriminate against different
users, such that the user model can handle a wider range of downstream tasks. Specifically, we reason that user behavior
forecasting may allow for more accurate item/ad recommendations and early detection of bad actors (e.g., users that
violate rules of operations), while user discrimination may empower better personalization and user re-identification.
With such design principles, we introduce two model training objectives: Future W -Behavior Prediction (FBP) and
Same User Prediction (SUP).

3.2.1 Future W -Behavior Prediction

In user modeling, encoding users’ long-term engagements is crucial. Typically, causal language modeling (CLM)
is employed as a training objective, which focuses on predicting the immediate next user behavior based on a given
behavior sequence. While CLM is a prevalent pre-training objective in natural language processing, it might not be
optimal for behavior-based user models. Unlike natural languages with strict syntax and grammar, user behaviors are
much more random and noisy. Forcing a model to predict the exact order of next user behaviors may lead to overfitting
to the idiosyncrasies in the data and thus compromise effective user representation learning.

Future W -Behavior Prediction is designed to overcome this by relaxing the order constraint. In this approach, given
a user behavior sequence and a specified future window size W , the objective is to predict the probability of each
behavior occurring within the user’s next W actions. This training target, in contrast to CLM, prioritizes understanding
a user’s longer-term future interests over precisely predicting the sequence of their imminent behaviors. This focus
more closely aligns with the goal of user modeling.

Let N define the number of behaviors of interest. The label of future W -behavior prediction is a N -length binary
vector, where each position indicates the presence of each unique behavior in the next W user behaviors. We add
a prediction layer that takes the last hidden state as input and makes N predictions based on it. Given a sequence
xk = [xk

1 , x
k
2 , . . . , x

k
T] of length T , we predict the presence of every event of interest in [xk

i+1, . . . , x
k
i+W] at each

xk
i , 0 < i < T −W .1 Let ŷki,n and yki,n respectively define the predicted and actual presence of the n-th behavior of

interest at the i-th input behavior xk, the FBP loss on xk is defined as:

ℓkF = − 1

(T −W)N

T−W∑
i=1

N∑
n=1

[yki,n log(ŷ
k
i,n) + (1− yki,n) log(1− ŷki,n)]. (3)

There are two more design considerations.

Classification or Regression: While formulating FBP as a regression task (predicting the frequency of each behavior)
is possible, it may skew the model’s focus towards more frequent events, overshadowing less common behaviors. Given
the skewed behavior distributions in our data, we opt for a binary classification approach.

Behaviors of Interest: Which behaviors to predict depends on the application. For instance, a model aimed at ad click
prediction might focus on ad-related behaviors. However, for broader downstream applications, we avoid manually
selecting specific behaviors and instead include all possible behaviors for greater generalizability.

1In preliminary experiments, we explored different prediction strategies, including at the end of the sequence xk
T−W , throughout

the entire sequence, only in later parts, or at intervals. We found that training at the end of the sequence underperformed, while
other methods yielded comparable results. Thus, we settled on the most intuitive approach, namely training at all behaviors in
[xk

1 , . . . , x
k
T−W].

5

3.2.2 Same User Prediction

The capability of discriminating different users is crucial for personalization, yet the FBP objective does not explicitly
train the model for this. Thus, we introduce the same user prediction (SUP) objective. SUP encourages the model to
assign similar embeddings to behavior sequences from the same user and dissimilar embeddings to behavior sequences
from different users. We train the model with contrastive learning (Chen et al., 2020), which aims to increase the
similarity between similar pairs of data while decreasing the similarity between dissimilar pairs. We randomly extract
one pair of non-overlapping behavior sequences from each user to constitute positive samples and use in-batch negative
sampling to obtain negative samples.

Let X = {xk = [xk
1 , . . . , x

k
tk],x

k+

= [xk+

1 , . . . , xk+

tk+]} define a batch of pairs of non-overlapping behavior sequences

from the same user, where M is the batch size, tk and tk
+

are the sequence lengths. Let ek denote the embedding of the
behavior sequence xk. We adopt the SimCLR (Chen et al., 2020) loss to implement SUP. Specifically, the loss function
regarding anchor xk is defined as follows:

ℓk,k
+

S = − log
exp(sim(ek, ek

+

)/τ)∑
j ̸=k exp(sim(ek, ej)/τ)

. (4)

where k and k+ represent the indices of the anchor and the behavior sequence from the same user, τ is the temperature
hyperparameter and sim(ek, ej) is the cosine similarity of ek and ej . For every positive pair (xk,xk+

), we respectively
take xk and xk+

as the contrastive anchor to calculate the contrastive loss. We also perform future W -behavior
prediction on both xk and xk+

. Weighting both losses equally, the final loss function per batch is thereby:

L =
1

M

M∑
k=1

1

2
(ℓk,k

+

S + ℓk
+,k

S) + ℓkF + ℓk
+

F (5)

3.3 Implementation

The USE model consists of 12 Retention layers, 8 retentive heads, a hidden size of 768, and an intermediate size of
3072. We set the future window size W as 100 for future W -behavior prediction (In Section B.1, we show the impact
of choosing different W). To construct pairs of non-overlapping behavior sequences as inputs, we filtered out users
with shorter than 1224-length (512*2+100*2) behavior sequences. Each input behavior sequence has a sequence length
of 512, and we ensure a distance of at least 100 behaviors between the pair of input behavior sequences to avoid
information leakage. We train the model on 766130 pairs of behavior sequences for 10 epochs, with a global batch size
of 512 and a learning rate of 4e− 4. The learning rate linearly increases from 0 to peak in the first 6 percent steps and
linearly decreases to 0 at the end. Training the user model takes about 36 hours on 8 NVIDIA V100 GPUs.

4 Experiments

In this section, we detail our experimental design and show empirical results. We focus on three research questions.

• RQ1: How do different training objectives impact the downstream performance of user embeddings in static
settings?

• RQ2: Does the stateful approach generate better embeddings than stateless approaches in dynamic settings?

• RQ3: How efficient is the stateful approach compared to stateless approaches in dynamic settings?

In static settings, user behavior sequences remain unchanged, whereas in dynamic settings, users continuously generate
new behaviors and we periodically update user embeddings in response to the new user data, approximating real-world
scenarios.

We describe our data and baseline models in Sections 4.1 and 4.2, respectively. In Section 4.3, we present and discuss
model performance on various tasks in static settings (RQ1). Finally, in Section 4.4 we delve into model performances
in dynamic settings (RQ2&3).

6

4.1 Data

We use user behavior sequences from Snapchat. To construct these sequences, we selected a total of 685 distinct user
behaviors, such as sending a chat, utilizing the camera, and applying a filter. We added a "new_session" behavior marker
in each user’s behavior sequence to signify the commencement of a session. An example sequence is: "new_session,
open_app, open_camera, read_message, close_app".

The dataset for training user models comprises of behavior sequences from a large, randomly selected sample2 of
U.S.-based adult users active between April 1, 2023, and April 14, 2023. "Active" is defined as engaging with Snapchat
for a cumulative duration exceeding one minute in this time frame. This sample was randomly divided into training
and validation sets at a 19:1 ratio. In our downstream evaluations, to prevent information leakage, we only included
behavior sequences from users who were not present in the user model training phase. All experiments were conducted
across 3 random seeds, and the results presented are the averages of these trials.

4.2 Baselines

We compare USE with a range of baseline models.

• Term Frequency (TF) and Term Frequency - Inverse Document Frequency (TF-IDF), which are traditional
methods for vector representation.

• Skip-Gram with Negative Sampling (SGNS) (Mikolov et al., 2013), a model that learns a fixed vector for each
user behavior by predicting context behaviors from a given target behavior.

• Untrained user representations, where each unique user behavior is represented by a randomly generated fixed
vector. This approach has demonstrated competitive performance in various natural language tasks (Arora
et al., 2020).

• Transformer Encoder trained with masked language modeling (Trans-MLM) and Transformer Decoder
trained with causal language modeling (Trans-CLM). These are our implementations of BERT (Kenton and
Toutanova, 2019) and GPT2 (Radford et al., 2019) for behavior-based user modeling, utilizing architectures
equivalent to BERT-base and GPT2-117M.

• Variants of USE, each trained with the same data and architecture but different training objectives: causal
language modeling (USE-CLM), future W -behavior prediction (USE-FBP), and same user prediction (USE-
SUP)

TF and TF-IDF baselines generate fixed-length vectors representing entire behavior sequences, which can directly
serve as user embeddings. Other models, such as SGNS, Untrained, BERT, and GPT2, learn vector representations
for separate behaviors. Consequently, it is necessary to aggregate these behavior-level vectors into a sequence-level
vector (i.e., a user embedding). For all models, we employ mean pooling to aggregate behavior vectors as user
embeddings. Additionally, for autoregressive models like GPT2 and USE, we explored the effectiveness of using the
last non-padded behavior’s embedding as the user embedding. However, this method showed significantly inferior
performance compared to mean pooling.

4.3 Static User Modeling

In this section, we aim to answer RQ1. We evaluate model performance on the 6 downstream tasks that utilize static
user behavior sequences. In each task, user behavior sequences are fixed (i.e., not updated). For USE and each baseline,
we compute user embeddings and use those as input for downstream evaluation.

4.3.1 Evaluation Tasks

User Retrieval (UR) This is a ranking task that evaluates a model’s ability to distinguish between different users. The
goal is to retrieve the correct user behavior sequence from a pool of 100 candidates, given a query behavior sequence.
Each sample comprises 101 user behavior sequences: 1 query and 100 candidates. Among the candidates, there is 1
positive candidate corresponding to the same user as the query and 99 negative candidates belonging to other users.
We represent each behavior sequence as a vector and rank the candidates based on their cosine similarity with the
query. The model’s performance is measured using Mean Reciprocal Rank (MRR): MRR = 1

N

∑N
i=1

1
ri

, where N is
the number of samples and ri is the rank of the positive candidate in the i-th sample. Each behavior sequence contains

2Note that we avoid reporting the actual sample sizes for all the analyses on purpose. However, we make sure that the sample
sizes are up to industry and academic standards.

7

Table 1: Evaluation results on static user modeling, including 6 tasks: User Retrieval (UR), Future Behavior Prediction
(FBP), Reported Account Prediction (RAP), Locked Account Prediction (LAP), Ads View Time Prediction (ATP) and
Account Self-deletion Prediction (ASP). We use bolded and underlined scores to indicate the best and second-best
performances.

Model UR FBP RAP LAP ATP ASP Ave.

TF 15.4 78.7 89.0 93.1 88.7 58.1 70.5
TF-IDF 17.5 78.9 88.3 92.5 88.0 60.4 70.9
SGNS 13.4 78.7 88.3 94.3 89.0 57.4 70.2
Untrained 15.2 78.9 89.0 94.0 88.8 59.9 71.0
Trans-MLM 27.2 79.8 90.6 95.3 89.7 62.8 74.2
Trans-CLM 33.2 79.8 90.7 94.4 90.0 63.8 75.3

USE-CLM 30.2 79.7 90.1 94.3 89.8 62.0 74.4
USE-FBP 36.1 80.3 90.0 94.0 89.5 64.7 75.8
USE-SUP 47.3 80.0 89.8 94.7 90.0 63.9 77.6

USE (ours) 47.4 80.3 90.0 95.0 90.4 64.5 78.0

512 user behaviors. To increase task difficulty, negative samples are chosen from behavior sequences with a TF vector
cosine similarity over 0.8 with the query (hard negatives).

Future Behavior Prediction (FBP) This multi-label classification task assesses a model’s ability to predict future
user behaviors. Specifically, it involves predicting whether a user will exhibit each behavior in their next 512 actions,
akin to the future W -behavior prediction objective with a future window of 512. The dataset training, validation and
testing ratio is 3:1:1. AUC is the evaluation metric.

Reported Account Prediction (RAP), Locked Account Prediction (LAP), Ads View Time Prediction (ATP), and
Account Self-deletion Prediction (ASP) These four tasks involve predicting users who get reported by others, whose
accounts get locked, who view an ad for a certain duration, and who delete their accounts voluntarily, respectively, on a
given date (which we refer to as label date). For each task, we vary the number of days (from 0 to 7) between the date
of the last available user behavior and the label date. Here, 0 corresponds to the users’ behavior sequences that end
on the label date but still before the timestamp of the event to predict. Hence, for each task, we have eight evaluation
datasets. Within each task, we evaluate the same set of users and ensure each dataset is balanced on class labels. Due to
space limits, we only report the models’ average performance across the 8 datasets in this section. The models’ detailed
performance on each task is presented in Appendix B.2. We use AUC as the evaluation metric.

Except for user retrieval, all tasks involve training a single-layer MLP (multi-layer perception) classifier with user
embeddings as input. Cross-validation with random search is employed for hyperparameter selection for the MLP
classifier on each dataset. The input user behavior sequence length for all tasks is fixed at 512.

4.3.2 Results

Table 1 shows the performance of different models across 6 downstream tasks in static settings. These results suggest a
significant advantage of sequence model-based methods over other baselines, underscoring the substantial potential and
capability of sequence models in user modeling. Notably, Trans-CLM exhibits overall better performance compared to
Trans-MLM, particularly in the User Retrieval (UR) task. This highlights the efficacy of causal language modeling in
learning user embeddings, especially for tasks like UR. Despite employing the same training objective as Trans-CLM,
USE-CLM demonstrates slightly inferior performance, suggesting a somewhat weaker representation capacity of
RetNet compared to the Transformer architecture at this scale (i.e., 100M parameters). This observation aligns with
findings in the original RetNet paper (Sun et al., 2023). However, this slight decrease in representation capability
is effectively offset by the adoption of more tailored training objectives. As the table indicates, both USE-FBP and
USE-SUP outperform USE-CLM and Trans-CLM, attesting to the effectiveness of our proposed pre-training objectives.
This effectiveness is further exemplified by the overall superior performance of our proposed method, USE. USE
surpasses its individual objective-based variants, demonstrating the synergistic benefit of combining Future W -Behavior
Prediction (FBP) and Same User Prediction (SUP) for the user model’s downstream effectiveness.

8

Table 2: Detailed evaluation results on Next-Period Behavior Prediction on 16 update periods of real-world simulation.
♣ refers to the Recent Only strategy, which generates user embeddings purely based on new behavior sequences in each
period. ♠ refers to the Pool Embeddings strategy, which independently computes an embedding at each period based
on new user behaviors and averages all the embeddings as the user embedding. The ♢ refers to USE and Recompute
All, which generate user embeddings conditioned on the entire user behavior sequence up to the current period. ∆
represents the performance difference between ♢ and the second-best strategy.

Model Performance on each update period

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ave.

Trans-CLM ♣ 68.8 68.8 69.1 68.9 68.8 69.1 68.2 69.6 69.3 69.0 69.2 68.7 68.8 69.0 68.9 68.7 68.93
♠ 69.0 71.1 72.6 73.4 74.3 75.0 75.3 75.0 75.6 76.1 76.1 76.1 76.5 76.3 76.5 76.5 74.72

USE-CLM

♣ 69.2 70.1 70.1 70.3 70.7 70.3 70.1 70.8 70.4 71.0 70.6 71.0 71.1 70.7 70.3 70.8 70.46
♠ 69.4 71.7 73.2 73.6 74.2 74.5 74.5 74.7 75.0 75.4 75.4 75.6 75.8 76.0 75.8 75.8 74.41
♢ 69.4 71.7 73.3 73.8 74.7 75.1 75.0 75.3 75.7 76.4 76.2 76.5 77.1 77.0 76.8 76.9 75.06
∆ 0.0 0.0 0.2 0.1 0.6 0.6 0.5 0.6 0.6 1.0 0.8 0.9 1.3 1.0 1.1 1.1 0.64

USE-FBP

♣ 69.5 70.1 70.6 70.3 70.1 70.6 69.7 70.5 70.7 70.7 71.4 70.7 70.7 70.7 70.5 70.5 70.46
♠ 69.5 71.3 72.6 72.8 73.0 73.7 73.2 73.9 74.1 74.5 74.4 74.5 74.8 74.6 74.5 74.2 73.47
♢ 69.5 71.4 72.7 73.0 73.6 74.5 74.3 75.0 75.1 75.8 75.8 76.0 76.3 76.1 76.2 76.0 74.46
∆ -0.0 0.1 0.1 0.2 0.7 0.8 1.2 1.1 1.1 1.3 1.4 1.5 1.5 1.5 1.7 1.8 0.99

USE-SUP

♣ 72.1 69.5 68.1 69.7 69.5 68.9 68.6 69.3 68.8 69.2 69.8 69.8 69.5 69.1 69.1 69.2 69.40
♠ 72.1 73.0 73.8 73.7 73.7 73.9 74.1 74.0 74.1 74.2 74.2 74.5 74.7 74.2 74.5 73.9 73.92
♢ 72.1 74.3 76.0 76.9 77.2 77.9 77.7 78.3 78.5 78.6 78.8 79.1 79.3 78.9 79.0 78.7 77.59
∆ 0.0 1.3 2.2 3.2 3.6 4.0 3.6 4.3 4.4 4.4 4.6 4.6 4.6 4.8 4.5 4.8 3.67

USE (ours)

♣ 72.4 70.3 70.4 70.8 70.7 70.6 70.4 70.6 70.4 70.3 71.5 71.0 70.7 70.5 71.0 70.4 70.74
♠ 72.5 73.5 74.4 74.7 74.6 74.7 74.7 74.6 74.8 74.9 74.9 75.3 75.1 75.2 74.8 74.8 74.59
♢ 72.5 74.8 76.5 77.2 77.4 78.3 78.0 78.2 78.6 78.7 78.7 79.1 79.1 78.9 78.8 78.9 77.73
∆ 0.0 1.3 2.1 2.5 2.8 3.5 3.3 3.6 3.8 3.8 3.8 3.8 4.0 3.7 4.1 4.1 3.14

4.4 Dynamic User Modeling

In this section, we answer RQ2 and RQ3 by conducting simulations that approximate real-world scenarios where users
continuously produce new behavior sequences, necessitating periodic updates to user embeddings to account for recent
user behavior changes. We evaluate the effectiveness and efficiency of stateful user models in comparison to stateless
models in such dynamic environments.

4.4.1 Evaluation Tasks

Our simulation uses behavior sequences of a random sample of Snapchat users that are not present in the training dataset,
with a span of 15 periods. Initially, each user possesses a behavior sequence comprising 250 behaviors. Subsequently,
in each period, each user generates an additional 250 behaviors (chosen based on the median number of behaviors per
day for active users: 241). At the end of each period, we update the user embeddings for downstream evaluation. We
adapt the User Retrieval and Future Behavior Prediction tasks used in the static settings for the now dynamic settings.
They are: User Re-Identification and Next-Period Behavior Prediction. The other four evaluation tasks in the static
settings, however, cannot be implemented due to resource limitations (e.g., expensive queries).

User Re-Identification: This task focuses on distinguishing users based on their behavioral patterns. We start by
collecting a historical behavior sequence of 4000 actions from each of the selected users and creating a corresponding
historical embedding for each. During the simulation, user embeddings are updated at the end of each period. For each
user, we rank all historical embeddings based on their cosine similarity with the current user embedding. Consistent
with the User Retrieval task, Mean Reciprocal Rank (MRR) is employed as the evaluation metric.

Next-Period Behavior Prediction: This multi-label classification task involves predicting a user’s probability of
displaying specific behaviors in the subsequent period. We train an MLP classifier using the behavior sequences of
an independent set of users. Throughout the simulation, user embeddings are updated at the end of each period. The
updated embeddings are then used to make predictions via the trained MLP classifier. AUC serves as the evaluation
metric.

9

Table 3: Evaluation results on User Re-Identification across 16 update periods of real-world simulation.

Model Performance on each update period

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ave.

Trans-CLM ♣ 29.4 28.5 27.6 27.7 26.8 27.1 26.4 25.8 25.7 25.4 25.4 25.5 25.0 24.7 24.0 24.4 26.21
♠ 29.4 35.8 39.4 42.5 44.2 45.9 47.4 48.5 49.0 50.0 50.4 50.8 51.5 52.2 52.6 52.7 46.41

USE-CLM

♣ 27.0 32.4 32.7 33.1 32.7 33.2 32.1 31.3 31.6 31.5 31.4 31.1 30.7 30.2 29.9 29.9 31.29
♠ 27.0 32.4 35.5 38.4 40.2 42.1 43.4 44.6 45.3 45.8 46.2 46.9 47.5 48.4 48.8 49.2 42.60
♢ 27.0 35.5 39.6 43.6 45.8 48.0 49.3 50.4 51.3 51.9 52.3 52.8 53.5 54.5 54.9 55.1 47.84
∆ 0.0 3.1 4.2 5.2 5.5 5.9 5.9 5.9 6.0 6.1 6.1 5.9 6.0 6.0 6.2 5.9 5.24

USE-FBP

♣ 26.4 40.1 44.4 46.4 46.1 45.3 44.9 44.4 43.9 44.0 43.3 43.9 43.1 42.5 42.1 42.2 42.68
♠ 26.4 35.9 40.2 43.7 45.7 47.5 49.1 49.9 50.5 51.3 52.0 52.3 52.6 53.2 53.7 54.1 47.38
♢ 26.4 37.7 44.0 48.5 51.6 54.0 55.7 57.0 57.9 58.8 59.1 59.7 60.3 60.8 61.1 61.3 53.35
∆ 0.0 -2.4 -0.4 2.1 5.5 6.4 6.6 7.2 7.4 7.5 7.2 7.4 7.6 7.5 7.4 7.1 5.25

USE-SUP

♣ 34.0 36.0 35.1 34.8 33.4 33.7 33.6 33.3 32.2 32.0 32.0 33.3 32.1 32.0 31.5 32.0 33.18
♠ 34.0 44.8 50.3 53.2 54.4 56.3 57.6 58.4 59.2 59.6 60.0 60.5 60.7 61.0 61.2 61.4 55.78
♢ 34.0 46.0 52.2 55.9 57.6 59.2 60.5 61.5 62.3 62.9 63.0 63.4 63.9 63.8 63.8 64.0 58.36
∆ 0.0 1.2 1.9 2.7 3.1 2.8 2.9 3.1 3.0 3.3 3.0 3.0 3.1 2.8 2.6 2.5 2.58

USE (ours)

♣ 37.3 41.1 41.3 40.6 39.6 39.7 38.7 38.3 37.9 37.6 38.2 38.4 36.9 37.3 36.7 36.4 38.49
♠ 37.3 46.0 51.5 54.2 55.8 57.3 58.3 59.2 59.8 60.6 60.7 60.9 61.4 61.8 62.0 61.9 56.79
♢ 37.3 47.9 53.1 55.9 57.8 59.2 60.0 60.9 61.6 62.3 62.2 62.3 62.7 63.0 63.3 63.6 58.31
∆ 0.0 1.9 1.6 1.6 2.0 1.8 1.7 1.7 1.8 1.7 1.5 1.4 1.4 1.1 1.4 1.7 1.52

4.4.2 Effectiveness

Table 2 and 3 present model performance in our simulations, utilizing different strategies for computing user embeddings.
The data in these tables consistently show that USE significantly outperforms the Recent Only and Pool Embeddings
strategies across a range of settings. This underscores the importance of incorporating user history in the generation of
user embeddings and highlights USE’s effectiveness in leveraging historical information. The Recent Only strategy,
which entirely omits historical data, yields the worst performance in nearly all scenarios. Predictably, it maintains
a consistent performance level across different periods, given its reliance on a uniform amount of information for
generating user embeddings. In contrast, both Pool Embeddings and USE demonstrate better performance in later
periods, benefiting from the accumulation of historical user data. Pool Embeddings shows a notable improvement
over the Recent Only approach, indicating that even a simple average of user embeddings from different periods can
significantly aid user modeling. However, it falls short of USE in almost every instance, and this performance gap
widens with the progression of periods. This trend highlights the superiority of generating embeddings based on
historical user states compared to independent embedding computations at each period. Moreover, echoing findings
from our static user modeling evaluations (see Section 4.3), USE surpasses baseline models in most settings. This
further validates the effectiveness of our proposed training objectives and of stateful user modeling in dynamic settings.

4.4.3 Efficiency

Figure 3: Accumulated time costs of generating user embed-
dings in dynamic settings, across USE and three stateless
strategies.

To fairly compare different methods’ efficiency in gen-
erating embeddings in the dynamic setting, we compute
the required cumulative time of each method for updating
user embeddings at the end of each period in our simu-
lation. Due to the varying memory usage with different
methods, we dynamically adjust the batch size to saturate
the GPU memory. Figure 3 illustrates the required cumu-
lative time of USE and 3 stateless methods for updating
user embeddings at the end of each period in our simula-
tion. As the figure shows, USE demonstrates a consistent,
constant time requirement for updates in each period, sim-
ilar to the stateless methods that disregard historical data.
In contrast, the Recompute All method incurs increas-
ingly more time as the length of the user behavior history
extends. The difference in efficiency between the stateful
approach and the ’Recompute All’ method is relatively

10

modest at the beginning but becomes markedly signifi-
cant over time. In real-world applications, where user
behavior sequences can expand considerably, the stateful

approach offers significant computational savings without compromising performance. Furthermore, while USE is
slightly slower than the Recent Only and the Pool Embeddings approach, optimization of the USE implementation can
help to minimize the efficiency difference.

5 Conclusion

In this work, we introduce the novel concept of stateful user modeling and conduct a comprehensive investigation,
notably through the development and evaluation of our proposed Stateful User Embedding (USE) approach. Our
experimental results demonstrate the significant advantages of USE in efficiently and effectively representing users
in both static and dynamic settings. By leveraging the two training objectives of Future W -Behavior Prediction and
Same User Prediction, USE not only addresses the limitations of traditional stateless models but also showcases its
superiority in user representation. Our empirical evaluation using real-life behavior sequences from Snapchat users
further confirms the effectiveness and efficiency of USE in generating user embeddings.

Broader Impact We anticipate our proposed stateful user modeling approach to motivate a wider range of research,
especially where the modeling targets dynamically evolve. For instance, our method can be readily applied to user
modeling domains other than instant messaging apps (e.g., search engines, e-commerce websites). Moreover, this
concept can apply to time-series analysis concerning dynamic targets, such as stock price and temperature forecasting,
and conversational AI systems, which may store historical interactions with each user as user states for more personalized
conversation.

References
Luka Abb and Jana-Rebecca Rehse. A Reference Data Model for Process-Related User Interaction Logs. In Claudio

Di Ciccio, Remco Dijkman, Adela del Río Ortega, and Stefanie Rinderle-Ma, editors, Business Process Management,
Lecture Notes in Computer Science, pages 57–74, Cham, 2022. Springer International Publishing. ISBN 978-3-031-
16103-2. doi: 10.1007/978-3-031-16103-2_7.

Nicholas Andrews and Marcus Bishop. Learning Invariant Representations of Social Media Users. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1684–1695, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1178. URL https://aclanthology.
org/D19-1178.

Simran Arora, Avner May, Jian Zhang, and Christopher Ré. Contextual embeddings: When are they worth it?
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2650–2663,
Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.236. URL https:
//aclanthology.org/2020.acl-main.236.

Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H Chi. Latent cross: Making use of
context in recurrent recommender systems. In Proceedings of the eleventh ACM international conference on web
search and data mining, pages 46–54, 2018.

Charles Chen, Sungchul Kim, Hung Bui, Ryan Rossi, Eunyee Koh, Branislav Kveton, and Razvan Bunescu. Predictive
Analysis by Leveraging Temporal User Behavior and User Embeddings. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pages 2175–2182, Torino Italy, October 2018a. ACM.
ISBN 978-1-4503-6014-2. doi: 10.1145/3269206.3272032. URL https://dl.acm.org/doi/10.1145/
3269206.3272032.

Di Chen, Qinglin Zhang, Gangbao Chen, Chuang Fan, and Qinghong Gao. Forum User Profiling by Incorporating
User Behavior and Social Network Connections. In Jing Xiao, Zhi-Hong Mao, Toyotaro Suzumura, and Liang-Jie
Zhang, editors, Cognitive Computing – ICCC 2018, Lecture Notes in Computer Science, pages 30–42, Cham, 2018b.
Springer International Publishing. ISBN 978-3-319-94307-7. doi: 10.1007/978-3-319-94307-7_3.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pages 1597–1607. PMLR, 2020.

Hang Chu, Amir Hosein Khasahmadi, Karl D. D. Willis, Fraser Anderson, Yaoli Mao, Linh Tran, Justin Matejka,
and Jo Vermeulen. SimCURL: Simple Contrastive User Representation Learning from Command Sequences. In

11

https://aclanthology.org/D19-1178
https://aclanthology.org/D19-1178
https://aclanthology.org/2020.acl-main.236
https://aclanthology.org/2020.acl-main.236
https://dl.acm.org/doi/10.1145/3269206.3272032
https://dl.acm.org/doi/10.1145/3269206.3272032

Proceedings of 21st IEEE International Conference on Machine Learning and Applications (ICMLA), Bahamas,
2022. IEEE. doi: 10.1109/ICMLA55696.2022.00186.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for social
recommendation. In The world wide web conference, pages 417–426, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016a.

Ruining He and Julian McAuley. Fusing similarity models with markov chains for sparse sequential recommendation.
In 2016 IEEE 16th international conference on data mining (ICDM), pages 191–200. IEEE, 2016.

Ruining He, Chen Fang, Zhaowen Wang, and Julian McAuley. Vista: A visually, socially, and temporally-aware model
for artistic recommendation. In Proceedings of the 10th ACM conference on recommender systems, pages 309–316,
2016b.

Balázs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with top-k gains for session-based recommenda-
tions. In Proceedings of the 27th ACM international conference on information and knowledge management, pages
843–852, 2018.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of NAACL-HLT, pages 4171–4186, 2019.

Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 447–456, 2009.

Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. Personalized news recommendation based on click behavior. In
Proceedings of the 15th international conference on Intelligent user interfaces, pages 31–40, 2010.

Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang Wang. Context-aware sequential recommendation. In 2016
IEEE 16th International Conference on Data Mining (ICDM), pages 1053–1058. IEEE, 2016.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed Representations of Words
and Phrases and their Compositionality. In Advances in Neural Information Processing Systems, volume 26.
Curran Associates, Inc., 2013. URL https://papers.nips.cc/paper_files/paper/2013/hash/
9aa42b31882ec039965f3c4923ce901b-Abstract.html.

Alexander Modell, Jonathan Larson, Melissa Turcotte, and Anna Bertiger. A Graph Embedding Approach to User
Behavior Anomaly Detection. In 2021 IEEE International Conference on Big Data (Big Data), pages 2650–2655,
December 2021. doi: 10.1109/BigData52589.2021.9671423.

Nikil Pancha, Andrew Zhai, Jure Leskovec, and Charles Rosenberg. PinnerFormer: Sequence Modeling for User
Representation at Pinterest, May 2022. URL http://arxiv.org/abs/2205.04507. arXiv:2205.04507 [cs].

Qi Pi, Weijie Bian, Guorui Zhou, Xiaoqiang Zhu, and Kun Gai. Practice on long sequential user behavior modeling for
click-through rate prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2671–2679, 2019.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised
multitask learners. 2019.

Kan Ren, Jiarui Qin, Yuchen Fang, Weinan Zhang, Lei Zheng, Weijie Bian, Guorui Zhou, Jian Xu, Yong Yu, Xiaoqiang
Zhu, et al. Lifelong sequential modeling with personalized memorization for user response prediction. In Proceedings
of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages
565–574, 2019.

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized markov chains for next-
basket recommendation. In Proceedings of the 19th international conference on World wide web, pages 811–820,
2010.

Statista. Snapchat daily active users 2023, aug 2023. URL https://www.statista.com/statistics/
545967/snapchat-app-dau/.

Qinghui Sun, Jie Gu, XiaoXiao Xu, Renjun Xu, Ke Liu, Bei Yang, Hong Liu, and Huan Xu. Learning interest-oriented
universal user representation via self-supervision. In Proceedings of the 30th ACM International Conference on
Multimedia, pages 7270–7278, 2022.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu Wei. Retentive
network: A successor to transformer for large language models, 2023.

12

https://papers.nips.cc/paper_files/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://papers.nips.cc/paper_files/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
http://arxiv.org/abs/2205.04507
https://www.statista.com/statistics/545967/snapchat-app-dau/
https://www.statista.com/statistics/545967/snapchat-app-dau/

Zhiqiang Tao, Sheng Li, Zhaowen Wang, Chen Fang, Longqi Yang, Handong Zhao, and Yun Fu. Log2Intent: Towards
Interpretable User Modeling via Recurrent Semantics Memory Unit. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’19, pages 1055–1063, New York, NY,
USA, July 2019. Association for Computing Machinery. ISBN 978-1-4503-6201-6. doi: 10.1145/3292500.3330889.
URL https://dl.acm.org/doi/10.1145/3292500.3330889.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Isaac Waller and Ashton Anderson. Generalists and Specialists: Using Community Embeddings to Quantify Activity
Diversity in Online Platforms. In The World Wide Web Conference, WWW ’19, pages 1954–1964, New York, NY,
USA, May 2019. Association for Computing Machinery. ISBN 978-1-4503-6674-8. doi: 10.1145/3308558.3313729.
URL https://dl.acm.org/doi/10.1145/3308558.3313729.

Chuhan Wu, Fangzhao Wu, Tao Qi, Jianxun Lian, Yongfeng Huang, and Xing Xie. PTUM: Pre-training User Model
from Unlabeled User Behaviors via Self-supervision. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 1939–1944, Online, November 2020. Association for Computational Linguistics. doi: 10.
18653/v1/2020.findings-emnlp.174. URL https://aclanthology.org/2020.findings-emnlp.174.

Longqi Yang, Chen Fang, Hailin Jin, Matthew D. Hoffman, and Deborah Estrin. Personalizing Software and Web
Services by Integrating Unstructured Application Usage Traces. In Proceedings of the 26th International Conference
on World Wide Web Companion, WWW ’17 Companion, pages 485–493, Republic and Canton of Geneva, CHE,
April 2017. International World Wide Web Conferences Steering Committee. ISBN 978-1-4503-4914-7. doi:
10.1145/3041021.3054183. URL https://dl.acm.org/doi/10.1145/3041021.3054183.

Junqi Zhang, Bing Bai, Ye Lin, Jian Liang, Kun Bai, and Fei Wang. General-Purpose User Embeddings based on Mobile
App Usage. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’20, pages 2831–2840, New York, NY, USA, August 2020. Association for Computing Machinery.
ISBN 978-1-4503-7998-4. doi: 10.1145/3394486.3403334. URL https://dl.acm.org/doi/10.1145/
3394486.3403334.

Lei Zheng, Vahid Noroozi, and Philip S Yu. Joint deep modeling of users and items using reviews for recommendation.
In Proceedings of the tenth ACM international conference on web search and data mining, pages 425–434, 2017.

13

https://dl.acm.org/doi/10.1145/3292500.3330889
https://dl.acm.org/doi/10.1145/3308558.3313729
https://aclanthology.org/2020.findings-emnlp.174
https://dl.acm.org/doi/10.1145/3041021.3054183
https://dl.acm.org/doi/10.1145/3394486.3403334
https://dl.acm.org/doi/10.1145/3394486.3403334

A Related Work

A.1 General-purpose User Modeling

General-purpose user modeling is emerging as a powerful user modeling technique, offering adaptability to distinct
downstream tasks such as item recommendations (Chen et al., 2018a) and ad conversion prediction (Wu et al., 2020),
without the need to fine-tune the upstream user model. This stands in contrast to task-specific user modeling, where
a separate user model is trained for each downstream task (e.g., Fan et al., 2019; Liu et al., 2010; Modell et al.,
2021; Waller and Anderson, 2019; Zheng et al., 2017)), and thus incurs more computational costs. There have been
different approaches to general-purpose user modeling. For instance, Chen et al. (2018) (Chen et al., 2018b) computed
user embeddings by aggregating user descriptive statistics on social media (e.g., minimum and maximum lengths of
posts, user interest terms) in the form of vectors. Andrews and Bishop (2019) (Andrews and Bishop, 2019) used a
Transformer-based encoder to learn user representations from the content and timestamps of users’ social media posts.
Sun et al. (2022) (Sun et al., 2022) used a multi-interest constrastive learning algorithm to derive representations of
both short-term and long-term user interests from user reviews and product ratings.

A.2 Behavioral Log-based User Modeling

In addition to the approaches mentioned above, general-purpose user modeling based on user behavioral logs has
become an increasingly popular and competitive alternative. User behavioral logs are records of high-resolution,
low-level events triggered by user actions in an information system (Abb and Rehse, 2022). General-purpose user
modeling based on such data has demonstrated success in various domains. For instance, Yang et al. (2017) (Yang
et al., 2017) used a word2vec algorithm to learn general user representations from behavioral sequences of Adobe
Photoshop users, by predicting a specific user behavior given neighboring behaviors. Tao et al. (2019) (Tao et al.,
2019) modeled also Photoshop users based on their behavior sequences, however, with an encoder-decoder model
(Log2Intent). They defined two training objectives: predicting the next behavior and maximizing the semantic similarity
between user behaviors and manual annotations of these behaviors. Chen et al. (2018) (Chen et al., 2018a) used an
RNN to learn representations for users of commercial websites based on their interaction sequences with the websites,
by predicting the next behavior. More recent studies have adopted the Transformer architecture, enabling the model to
learn contextual, more nuanced user representations. For example, Zhang et al. (2020) (Zhang et al., 2020) modeled
mobile phone users from their app usage sequences (e.g., app installation, uninstallation, retention, and timestamps)
with two training objectives: reconstructing a user sequence and predicting masked behaviors. Chu et al. (2022) (Chu
et al., 2022) focused on professional design software, where they learned representations of users from their software
command sequences, using a contrastive training objective. Pancha et al. (2022) (Pancha et al., 2022) modeled Pinterest
users based on their engagement sequences. They propose a Dense All Action Prediction that encourages the hidden
state of each randomly selected user behavior in the user behavior sequence to be similar to the Pins the user interacts
with in the next K days starting from the time this behavior. It is similar to our future W -behavior prediction with
billions of candidate events. They solve it through contrastive learning with a negative sampling strategy.

A.3 Stateless vs. Stateful User Modeling

Most of the related work described above (except (Chen et al., 2018a)) adopted a stateless user modeling paradigm,
which does not compute user states. To update user embeddings, the model has to either discard (part of) historical user
behaviors (which leads to less representation capacity) or recompute the entire user embedding with all the past and
new behaviors (which is expensive). In contrast, stateful user modeling allows the storage and retrieval of previous
user states, making dynamic updates of user embeddings natural and efficient. Given the almost non-existent work on
stateful general-purpose user modeling, we review, instead, stateful but task-specific user modeling research below.

Examples of early approaches include temporal matrix factorization (Koren, 2009), Markov chains (He and McAuley,
2016; He et al., 2016b; Rendle et al., 2010) and RNNs (Beutel et al., 2018; Hidasi and Karatzoglou, 2018; Liu et al.,
2016). More recent approaches resort to memory-based networks (Pi et al., 2019; Ren et al., 2019), where an explicit
memory module is specified to learn and store information about users’ past behaviors (i.e., user memories), updates
these memories as new data comes in, and thus enables incremental updates of user embeddings over time. Our
paper distinguishes itself from these earlier studies in three aspects. First, we focus on general-purpose user modeling
in a dynamic setting. Second, we adopt the Retentive Network architecture, which is not only Transformer-based
(enabling greater representational capability and training parallelism, compared to the earlier approaches), but also
RNN-based (allowing for low-cost inference and updates of user embeddings). Third, unlike earlier studies, we also
comprehensively evaluate our approach in terms of both efficacy and efficiency compared to stateless approaches.

14

W
User Retrieval

512 1024 2048 4096

100 (ours) 29.98 40.12 49.29 58.67
50 +0.31 -0.06 -0.26 +0.08
200 -1.54 -1.22 -0.64 -0.85
500 -4.72 -4.60 -3.48 -2.71
1000 -4.51 -4.22 -2.04 -1.44

Table 4: Ablation study on window size W used in the future W -behavior prediction objective. We evaluate the models
on User Retrieval task with different input lengths.

B Additional Experimental Results

B.1 Impact of W in Future W -Behavior Prediction

Thus, in this section, present empirical results on the impact of future window size W used in the future W -behavior
prediction objective. We train 5 different models with only the future W -behavior prediction objective and evaluate
them on the User Retrival task with different input lengths. Table 4 shows the results of models trained with different W .
As shown in the table, models with a future window size of 50 and 100 achieves a similar level of performance, while
the models performance drop greatly as W increase. This is mainly because an extra-long window size results in mostly
identical FBP labels (i.e., the existence of each unique behavior in the future W behavior window) that encourage the
model to predict almost the same target at each input behavior, which hinders the model from learning meaningful user
engagement patterns.

B.2 Static User Modeling

Table 5: Detailed evaluation results on Reported Account Prediction (RAP).

Model Number of days between input and label
0 1 2 3 4 5 6 7 Ave.

TF 91.50 89.30 89.10 89.10 88.60 87.60 88.30 88.10 88.95
TF-IDF 90.50 89.00 88.80 88.10 87.60 88.40 87.20 87.10 88.34
SGNS 91.90 88.60 87.30 88.50 88.30 88.20 87.60 86.10 88.31
Untrained 91.40 90.10 89.30 88.60 88.60 88.60 87.90 87.70 89.03
Trans-MLM 93.10 90.80 90.80 91.10 89.40 90.00 90.20 89.40 90.60
Trans-CLM 93.70 92.10 91.40 90.50 89.80 89.60 89.00 89.80 90.74

USE-CLM 93.50 90.20 90.00 90.00 90.50 89.20 88.10 89.00 90.06
USE-FBP 92.70 89.70 90.50 89.90 89.60 88.70 90.30 88.20 89.95
USE-SUP 92.50 90.50 89.50 89.50 89.80 88.70 89.10 89.10 89.84

USE (ours) 92.20 91.10 90.80 90.20 90.20 90.10 88.40 87.30 90.04

In this section, we present additional experimental results on 4 downstream tasks, Reported Account Prediction (RAP),
Locked Account Prediction (LAP), Ads View Time Prediction (ATP), and Account Self-deletion Prediction (ASP). We
collect 8 datasets for each task. Each dataset contains the same users and labels, yet each of them contains behavior
sequences of the users that are respectively 0/1/2/3/4/5/6/7 days before the label date, the date when the target event
happens (e.g., a user was locked). As shown in the tables, USE achieves good performance across these tasks no matter
the number of days between input and label. Moreover, in all the tasks, we observe a performance drop as the number
of days between input and label increases from 0 to 7. However, in 3 out of 4 tasks, the models are able to achieve an
AUC of over 0.8 when the number of days between input and label is 7, indicating the viability of accurately forecasting
users’ future engagements before at least one week.

15

Table 6: Detailed evaluation results on Locked Account Prediction (LAP).

Model Number of days between input and label
0 1 2 3 4 5 6 7 Ave.

TF 97.40 95.60 93.30 92.10 90.30 91.60 91.80 93.00 93.14
TF-IDF 96.80 95.60 92.90 92.00 89.90 90.80 91.50 90.80 92.54
SGNS 98.00 96.60 94.70 93.60 91.80 93.00 93.00 93.60 94.29
Untrained 97.90 96.30 93.80 93.40 92.50 92.80 93.30 91.90 93.99
Trans-MLM 98.20 96.90 95.70 95.00 94.00 94.30 94.10 94.40 95.33
Trans-CLM 98.30 97.20 94.70 94.10 93.00 93.20 91.80 93.20 94.44

USE-CLM 98.00 95.80 94.80 94.80 92.80 93.40 92.70 92.30 94.33
USE-FBP 97.00 96.40 94.70 94.20 93.70 92.70 92.80 90.90 94.05
USE-SUP 97.30 97.00 94.10 94.80 94.00 94.10 93.60 93.00 94.74

USE (ours) 98.20 97.20 94.70 94.20 94.10 93.80 93.70 94.40 95.04

Table 7: Detailed evaluation results on Ads View Time Prediction (ATP).

Model Number of days between input and label
0 1 2 3 4 5 6 7 Ave.

TF 96.90 89.50 89.20 86.60 86.50 86.80 85.90 88.00 88.67
TF-IDF 95.60 88.80 88.60 85.80 85.50 87.00 86.90 85.40 87.95
SGNS 97.40 89.80 88.60 87.30 86.40 87.30 87.40 87.50 88.96
Untrained 96.60 89.10 88.90 87.70 87.20 87.50 87.40 86.20 88.83
Trans-MLM 96.20 91.40 90.60 88.00 88.40 88.60 86.80 87.90 89.74
Trans-CLM 97.70 91.00 90.10 89.20 88.20 88.60 87.60 87.70 90.01

USE-CLM 97.10 91.30 90.10 89.30 88.40 87.50 86.70 87.90 89.79
USE-FBP 97.00 91.70 89.30 87.00 88.30 87.20 87.40 88.00 89.49
USE-SUP 95.80 90.60 90.20 89.80 89.00 89.50 87.10 88.00 90.00

USE (ours) 96.20 91.80 90.70 89.40 88.70 89.80 88.20 88.30 90.39

Table 8: Detailed evaluation results on Account Self-deletion Prediction (ASP).

Model Number of days between input and label
0 1 2 3 4 5 6 7 Ave.

TF 63.20 55.30 62.10 62.50 65.10 50.50 54.30 52.00 58.13
TF-IDF 63.10 51.80 63.10 58.00 56.80 63.70 63.80 62.90 60.40
SGNS 58.70 56.40 57.10 57.40 56.20 58.10 58.50 56.50 57.36
Untrained 60.00 61.00 59.00 61.90 59.00 59.90 60.00 58.40 59.90
Trans-MLM 63.30 62.60 63.30 62.10 63.00 63.10 63.80 61.30 62.81
Trans-CLM 63.80 64.20 62.50 66.70 63.10 63.70 63.10 63.40 63.81

USE-CLM 62.80 61.30 61.90 61.70 61.30 66.40 60.80 60.10 62.04
USE-FBP 63.90 67.40 66.10 65.00 63.30 66.10 61.80 64.20 64.72
USE-SUP 63.00 64.70 61.50 63.70 65.50 64.50 64.10 63.90 63.86

USE (ours) 63.30 64.40 64.30 64.90 64.90 66.00 65.00 63.30 64.51

16

	Introduction
	Preliminaries
	Behavior-based User Modeling
	Stateless and Stateful User Modeling

	Method
	Model Architecture
	Training Objectives
	Future W-Behavior Prediction
	Same User Prediction

	Implementation

	Experiments
	Data
	Baselines
	Static User Modeling
	Evaluation Tasks
	Results

	Dynamic User Modeling
	Evaluation Tasks
	Effectiveness
	Efficiency

	Conclusion
	Related Work
	General-purpose User Modeling
	Behavioral Log-based User Modeling
	Stateless vs. Stateful User Modeling

	Additional Experimental Results
	Impact of W in Future W-Behavior Prediction
	Static User Modeling

